首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme Q10 (CoQ10) is an important mitochondrial electron transfer component and has been postulated to function as a powerful antioxidant protecting LDL from oxidative damage. It could thus reduce the risk of cardiovascular disease. Thus far, beneficial effects of supplementation with CoQ10 have been reported. To study the relation between unsupplemented concentrations of plasma CoQ10 and coronary atherosclerosis, we performed a case-control study among 71 male cases with angiographically documented severe coronary atherosclerosis and 69 healthy male controls free from symptomatic cardiovascular disease and without atherosclerotic plaques in the carotid artery.

Plasma CoQ10 concentrations (mean ± SE) were 0.86 ± 0.04 vs. 0.83 ± 0.04 μmol/l for cases and controls, respectively. The CoQ10/LDL-cholesterol ratio (μmol/mmol) was slightly lower in cases than in controls (0.22 ± 0.01 vs. 0.26 ± 0.03). Differences in CoQ10 concentrations and CoQ10/LDL-cholesterol ratio did not reach significance. The odds ratios (95% confidence interval) for the risk of coronary atherosclerosis calculated per μmol/l increase of CoQ10 was 1.12 (0.28-4.43) after adjustment for age, smoking habits, total cholesterol and diastolic blood pressure.

We conclude that an unsupplemented plasma CoQ10 concentration is not related to risk of coronary atherosclerosis.  相似文献   

2.
An increasing amount of experimental and epidemiological evidence implicates the involvement of oxygen derived radicals in the pathogenesis of cancer development. It is well known that chemical carcinogenesis is multistage process. Free radicals are found to be involved in both initiation and promotion of multistage carcinogenesis. Tamoxifen (TAM) is a potent antioxidant and a non-steroidal antiestrogen drug most used in the chemotherapy and chemoprevention of breast cancer. Besides its anticarcinogenic potential, it also produces some adverse toxic side effects, while taken for a long time. In order to minimise the side effects and to improve the antioxidant efficacy of tamoxifen, coenzyme Q10 (CoQ10) was added. Hence the present study was designed to investigate the combined efficacy of TAM along with CoQ10 in 7, 12 dimethyl benz(a)anthracene (DMBA) induced peroxidative damage in rat mammary carcinoma. The experimental setup comprised of one control and five experimental groups and it was carried out in adult female Sprague-Dawley rats. Mammary carcinoma was induced by oral administration of DMBA (25 mg kg–1 body wt) and the treatment was started by the oral administration of TAM (10 mg kg–1 body wt day–1) and CoQ10 (40 mg kg–1 body wt day–1) dissolved in olive oil and continued for 28 days. Rats induced with DMBA showed a decline in the thiol capacity of the cell accompanied by high malondialdehyde content levels along with lowered activities of antioxidant status (superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione). In contrast, glutathione metabolising enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione-S-transferase) were increased significantly in chemically induced carcinoma bearing rats. Administration of TAM along with CoQ10 restored the activities to a significant level thereby preventing cancer cell proliferation. This study highlights the increased antioxidant enzyme activities in relation to the susceptibility of cells to carcinogenic agents and the response of tumour cells to the chemotherapeutic agents.  相似文献   

3.
Assay of coenzyme Q(10) in plasma by a single dilution step   总被引:2,自引:0,他引:2  
A new method is described for determining coenzyme Q(10) (CoQ(10)) in plasma. The method is based on oxidation of CoQ(10) in the sample by treating it with para-benzoquinone followed by extraction with 1-propanol and direct injection into the HPLC apparatus. This method achieves a linear detector response for peak area measurements over the concentration range of 0.05-3.47 microM. Diode array analysis of the peak was consistent with CoQ(10) spectrum. Supplementation of the samples with known amounts of CoQ(10) yielded a quantitative recovery of 96-98.5%; the method showed a level of quantitation of 1.23 nmol per HPLC injection (200 microl of propanol extract containing 33.3 microl of plasma). A correlation of r = 0.99 (P < 0.0001) was found with a reference electrochemical detection method. Within run precision showed a CV% of 1.6 for samples approaching normal values (1.02 microM). Day-to-day precision was also close to 2%.  相似文献   

4.
Abstract

Effects of dietary L-carnitine and coenzyme Q10 (CoQ10) at different supplemental ages on performance and some immune response were investigated in ascites-susceptible broilers. A 3 × 2 × 2 factorial design was used consisting of L-carnitine supplementation (0, 75, and 100 mg/kg), CoQ10 supplementation (0 and 40 mg/kg) and different supplemental ages (from day 1 on and from day 10 on). A total of 480 one-day-old Arbor Acre male broiler chicks were randomly allocated to 12 groups, every group had five replicates, each with eight birds. The birds were fed a corn-soybean based diet for six weeks. From day 10 – 21, all the birds were exposed to a low ambient temperature (12 – 15°C) to increase the susceptibility to ascites. No significant effects were observed on growth performance by L-carnitine, CoQ10 supplementation, and different supplemental ages. Packed cell volume was significantly decreased by L-carnitine supplementation alone, and ascites heart index and ascites mortality were decreased by L-carnitine, CoQ10 supplementation alone, and L-carnitine + CoQ10 supplementation together (p < 0.05). Heart index of broilers was significantly improved by L-carnitine, CoQ10 supplementation alone during 0 – 3 week. Serum IgG content was improved by L-carnitine supplementation alone (p < 0.05), but lysozyme activity was increased by L-carnitine + CoQ10 supplementation together (p < 0.05). A significant L-carnitine by supplemental age interaction was observed in lysozyme activity. L-carnitine supplementation alone had no effects on the peripheral blood lymphocyte (PBL) proliferation in response to concanavalin A (ConA) and lipopolysaccharide, but supplemental CoQ10 alone and L-carnitine + CoQ10 together decreased the PBL proliferation in response to ConA (p < 0.05). The present study suggested that L-carnitine + CoQ10 supplementation together had positive effects on some immune response of ascites-susceptible broilers, which might benefit for the reduction of broilers' susceptibility to ascites.  相似文献   

5.
《Free radical research》2013,47(6):707-716
Abstract

Bleomycin (BLM) is an anti-cancer drug that can induce formation of reactive oxygen species (ROS). To investigate the association between up-regulation of antioxidant enzymes and coenzyme Q10 (CoQ10) in acquired BLM resistance, one BLM-resistant clone, SBLM24 clone, was selected from a human oral cancer cell line, SCC61 clone. The BLM resistance of SBLM24 clone relative to a sub-clone of SCC61b cells was confirmed by analysis of clonogenic ability and cell cycle arrest. CoQ10 levels and levels of Mn superoxide dismutase, glutathione peroxidase 1, catalase and thioredoxin reductase 1 were augmented in SBLM24 clone although there was also a mild increase in the expression of BLM hydrolase. Suppression of CoQ10 levels by 4-aminobenzoate sensitized BLM-induced cytotoxicity. The results of suppression on enhanced ROS production by BLM and the cross-resistance to hydrogen peroxide in SBLM24 clone further demonstrated the development of adaptation to oxidative stress during the formation of acquired BLM resistance.  相似文献   

6.
7.
By the optimization of nitrogen source for coenzyme Q10 (ubiquinone, CoQ10) production in Agrobacterium tumefaciens KCCM 10413 culture, the highest CoQ10 production was achieved in medium containing corn steep powder (CSP). Components for a stimulatory effect on the production of CoQ10 in CSP were screened, and lactate was found to increase dry cell weight (DCW) and the specific CoQ10 content. In a fed-batch culture of A. tumefaciens, supplementation with 1.5 g of lactate l−1 further improved DCW, the specific CoQ10 content, and CoQ10 production by 16.0, 5.8, and 22.8%, respectively. It has been reported that lactate stimulates cell growth and acts as an accelerator driving the tricarboxylic acid (TCA) cycle (Roberto et al. 2002, Biotechnol Let 24:427–431; Matsuoka et al. 1996, Biosci Biotechnol Biochem 60:575–579). In this study, lactate supplementation increased DCW and the specific CoQ10 content in A. tumefaciens culture, probably by accelerating TCA cycle and energy production as reported previously, leading to the increase of CoQ10 production.  相似文献   

8.
9.
A novel polarographic method for the determination of coenzyme Q(10) in beta-cyclodextrin (beta-CD) and iodinate system is proposed. The stability of coenzyme Q(10) to light was improved by the formation of coenzyme Q(10)-beta-CD inclusion complex. In addition, the sensitivity for the determination of coenzyme Q(10) was enhanced by both the formation and the polarographic catalytic wave of the inclusion complex in the presence of iodinate. In 0.1 mol/L HAc-NaAc (pH 4.7)-5.0 x 10(-5) mol/L beta-CD-1.2 x 10(-3) mol/L potassium iodinate-ethanol/water (60:40, v/v) medium, coenzyme Q(10)-beta-CD inclusion complex yielded a sensitive association/parallel catalytic wave. The second-order derivative peak current of the catalytic wave was proportional to coenzyme Q(10) concentration in the range of 6.0 x 10(-8)-2.5 x 10(-7) mol/L, and the detection limit was 1.0 x 10(-8) mol/L. The proposed method has high analytical sensitivity and is allowed to determine coenzyme Q(10) under light.  相似文献   

10.
Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b 5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b 5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.  相似文献   

11.
Shinkarev VP 《FEBS letters》2006,580(11):2534-2539
The photosynthetic reaction center (RC) from purple bacteria is frequently used as a model for the interaction of ubiquinones (coenzyme Q) with membrane proteins. Single-turnover flash activation of RC leads to formation of the semiquinone (SQ) of the secondary acceptor quinone after odd flashes and quinol after even flashes. The ubiquinol escapes the binding site in 1 ms, while the SQ does not leave the binding site for at least 5 min. Observed difference between these times suggests a large energetic barrier for the SQ. However, high apparent dielectric constant in the vicinity of the quinone ring (>or=25) results in a relatively small electrostatic energy of SQ stabilization. To resolve this apparent contradiction I suggest that a significant part of the kinetic stabilization of the SQ is achieved by the special topology of the binding site in which quinone can exit the binding site only by moving its headgroup toward the center of the membrane. The large energetic penalty of transferring the charged headgroup to the membrane dielectric can explain the observed kinetic stability of the SQ.  相似文献   

12.
Ubiquinone, also called coenzyme Q, is a lipid subject to oxido-reduction cycles. It functions in the respiratory electron transport chain and plays a pivotal role in energy generating processes. In this review, we focus on the biosynthetic pathway and physiological role of ubiquinone in bacteria. We present the studies which, within a period of five decades, led to the identification and characterization of the genes named ubi and involved in ubiquinone production in Escherichia coli. When available, the structures of the corresponding enzymes are shown and their biological function is detailed. The phenotypes observed in mutants deficient in ubiquinone biosynthesis are presented, either in model bacteria or in pathogens. A particular attention is given to the role of ubiquinone in respiration, modulation of two-component activity and bacterial virulence. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

13.
There is substantial evidence that mitochondrial dysfunction and oxidative damage may play a key role in the pathogenesis of neurodegenerative disease. Evidence supporting this in both Alzheimer's and Parkinson's diseases is continuing to accumulate. This review discusses the increasing evidence for a role of both mitochondrial dysfunction and oxidative damage in contributing to beta-amyloid deposition in Alzheimer's disease. I also discuss the increasing evidence that Parkinson's disease is associated with abnormalities in the electron transport gene as well as oxidative damage. Lastly, I reviewed the potential efficacy of coenzyme Q as well as a number of other antioxidants in the treatment of both Parkinson's and Alzheimer's diseases.  相似文献   

14.
Changes in myocardium were studied during oxidative stress induced by infusion of hydrogen peroxide in the coronary vessels of isolated rat heart. Moderate concentrations of H2O2 increased the heart rate but decreased the contractile force, whereas higher concentrations of H2O2 decreased both parameters and increased the end diastolic pressure. The effect of H2O2 was stable, cumulative, and was associated with disturbance in respiration of mitochondria, increased production of ROS in them, and decrease in activities of antioxidant enzymes in the myocardium. Changes in the antioxidant status of the myocardium induced by long-term addition of coenzyme Q(10) into food was accompanied by decrease in the negative inotropic effect of H2O2, whereas the levels of superoxide dismutase and glutathione peroxidase after oxidative stress were virtually unchanged. The activities of these enzymes displayed a high positive correlation with the cardiac function. The findings suggest that coenzyme Q(10) should increase resistance of the myocardium to oxidative stress not only by a direct antioxidant mechanism but also indirectly, due to increased protection of antioxidant enzymes.  相似文献   

15.
Strains of basidiomycetous yeasts isolated from different sources were studied in order to determine the content of carotenoid pigments and ubiquinone Q10 for subsequent selection work to obtain producers of these substances. The high specific productivity of carotenoids (600–700 mg/g) was revealed in the representatives of the following species: Cystofilobasidium capitatum, Rhodosporidium diobovatum, R. sphaerocarpum, Rhodotorula glutinis, Rh. minuta, and Sporobolomyces roseus. The ratio of the major pigments (torulene, torularhodine, and β-carotene) in the representatives of different species was studied. Certain specific features of pigment formation in relation to the taxonomic position of the yeasts were determined. Eurybiont species with substantial ecological lability are the most active producers of carotenoids and ubiquinone Q10 among the epiphytes. It is the first time a comparative analysis of the coenzyme Q10 content in different taxa has been performed using several strains of the same species. The maximal coenzyme Q10 production (1.84 mg/g of dry biomass) was found in the yeast species R. sphaerocarpum.  相似文献   

16.
Summary A phenomenon associated with the aging process is a general age-dependent decline in cellular bioenergetic capacity that varies from tissue to tissue and even from cell to cell within the same tissue. This variation eventually forms a tissue bioenergy mosaic. Recent evidence by our group suggests that the accumulation of mitochondrial DNA mutations, in conjunction with a concurrent decrease in full-length mtDNA in tissues such as skeletal and cardiac muscle, strongly correlates with decreased mitochondrial function and accounts for the bioenergy mosaic. Evidence is also presented suggesting that amelioration with coenzyme Q10 may restore some of the age-associated decline in bioenergy function, in effect providing the potential for a “redox therapy”. Coenzyme Q is a naturally occurring material that is present in the membranes of all animal cells. Its primary function is to act as an electron carrier in the mitochondrial electron transport chain enabling the energy from substrates such as fats and sugars (in the form of reducing equivalents) to be ultimately captured in the form of ATP, which in turn may be utilised as a source of cellular bioenergy. Coenzyme Q10 has no known toxic effects and has been used in a limited number of animal studies and human clinical trials; however, the mechanism of action of coenzyme Q10 remains unclear. A series of experiments by this group aimed at determining the efficacy of coenzyme Q10 treatment on ameliorating the bioenergy capacity at the organ and cellular level will also be reviewed.  相似文献   

17.
Quinones (e.g., coenzyme Q, CoQ10) are best known as carriers of electrons and protons during oxidative phosphorylation and photosynthesis. A myriad of mostly more indirect physical methods, including fluorescence spectroscopy, electron-spin resonance, and nuclear magnetic resonance, has been used to localize CoQ10 within lipid membranes. They have yielded equivocal and sometimes contradictory results. Seeking unambiguous evidence for the localization of ubiquinone within lipid bilayers, we have employed neutron diffraction. CoQ10 was incorporated into stacked bilayers of perdeuterated dimyristoyl phosphatidyl choline doped with dimyristoyl phosphatidyl serine containing perdeuterated chains in the natural fluid-crystalline state. Our data show CoQ10 at the center of the hydrophobic core parallel to the membrane plane and not, as might be expected, parallel to the lipid chains. This localization is of importance for its function as a redox shuttle between the respiratory complexes and, taken together with our recent result that squalane is in the bilayer center, may be interpreted to show that all natural polyisoprene chains lie in the bilayer center. Thus ubiquinone, in addition to its free radical scavenging and its well-known role in oxidative phosphorylation as a carrier of electrons and protons, might also act as an inhibitor of transmembrane proton leaks.  相似文献   

18.
Reactive oxygen species (ROS) play a major role in causing mitochondrial changes linked to cancer and metastasis. Uptake of antioxidants by tissue to reduce the ROS production could be instrumental in controlling cancer. Tamoxifen (TAM), a nonsteroidal anti-estrogen drug most used in the chemotherapy and chemoprevention of breast cancer. Riboflavin, niacin and coenzyme Q10 (CoQ10) are proved to be potent antioxidants and protective agents against many diseases including cancer. The objective of this research is to determine the therapeutic efficacy of combinatorial therapy on mammary carcinoma bearing rats in terms of the mitochondrial lipid peroxidation and antioxidant status especially MnSOD. Female albino rats of Sprague-Dawley strain were selected for the investigation. Mammary carcinoma was induced with 7,12-dimethyl benz(a)anthracene (DMBA: 25 mg), and the treatment was started by the oral administration of TAM (10 mg/kg body weight/day) along with riboflavin (45 mg/kg body weight/day), niacin (100 mg/kg body weight/day) and CoQ10 (40 mg/kg body weight/day) for 28 days. The levels of lipid peroxides, activities of enzymic and non-enzymic antioxidants were measured in the mitochondria isolated from the mammary gland and liver of control and experimental rats. Rats treated with DMBA showed an increase in mitochondrial lipid peroxidation (mammary gland 52.3%; liver 25.1%) accompanied by high malondialdehyde levels along with lowered activities of mitochondrial enzymic antioxidants [superoxide dismutase (mammary gland 19.9%; liver 24.8%), catalase (mammary gland 50%; liver 19.7%), glutathione peroxidase (mammary gland 47.8%; liver 31.1%)] and non-enzymic antioxidants [reduced glutathione (mammary gland 14.3%; liver 13.3%), Vitamin C (mammary gland 6.49%; liver 21.4%) and E (mammary gland 20.3%; liver 22.2%)]. Administration of combinatorial therapy restored lipid peroxide level and the activities of enzymic and non-enzymic antioxidants to near normalcy. In addition, antitumour activity was also found to be enhanced which is evident from the increased expression of tumour suppressor gene MnSOD thereby preventing cancer cell proliferation. These results suggested that TAM treatment is the most effective during co-administration of riboflavin, niacin and CoQ10 in terms of mitochondrial antioxidant and antitumour activity.  相似文献   

19.
In this communication, the concept is developed that coenzyme Q10 has a toti-potent role in the regulation of cellular metabolism. The redox function of coenzyme Q10 leads to a number of outcomes with major impacts on sub-cellular metabolism and gene regulation. Coenzyme Q10's regulatory activities are achieved in part, through the agency of its localization in the various sub-cellular membrane compartments. Its fluctuating redox poise within these membranes reflects the cell's metabolic micro-environments. As an integral part of this process, H2O2 is generated as a product of the normal electron transport systems to function as a mitogenic second messenger informing the nuclear and mitochondrial (chloroplast) genomes on a real-time basis of the status of the sub-cellular metabolic micro-environments and the needs of that cell. Coenzyme Q10 plays a major role both in energy conservation, and energy dissipation as a component of the uncoupler protein family. Coenzyme Q10 is both an anti-oxidant and a pro-oxidant and of the two the latter is proposed as its more important cellular function. Coenzyme Q10 has been reported, to be of therapeutic benefit in the treatment of a wide range of age related degenerative systemic diseases and mitochondrial disease. Our over-arching hypotheses on the central role played by coenzyme Q10 in redox poise changes, the generation of H2O2, consequent gene regulation and metabolic flux control may account for the wide ranging therapeutic benefits attributed to coenzyme Q10.  相似文献   

20.
DDL1 encodes a mitochondrial phospholipase A1 involved in acyl chain remodeling of mitochondrial phospholipids and degradation of cardiolipin in Saccharomyces cerevisiae. The deletion of DDL1 leads to respiratory growth defects. To elucidate the physiological role of DDL1, we screened for genes that, when overexpressed, suppress the respiratory growth defect of the DDL1 deletion mutant. Introduction of COQ8, COQ9, or COQ5, which are involved in coenzyme Q (CoQ) synthesis, using a multicopy vector suppressed the respiratory growth defect of the DDL1 deletion mutant. In contrast, introduction of COQ8 using a multicopy vector did not accelerate the growth of the deletion mutants of TAZ1 or CLD1, which encode an acyltransferase or phospholipase A2, respectively, involved in the remodeling of cardiolipin. These results suggest genetic interactions between the mitochondrial phospholipase A1 gene and the genes involved in CoQ synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号