首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antineoplastic agents are known to induce the production of free radicals leading to cell damage. These adverse effects may fuel the acquisition of new mutations and the development of treatment resistances. We selected 30 metastatic breast cancer patients receiving palliative chemotherapy, and paired blood samples, before and after chemotherapy, were extracted. We analysed DNA, lipid and protein oxidative damage markers and determined the extent of antioxidant and repair defences activation at the systemic level. We found that the DNA repair activity of the KU86 enzyme was significantly lower after chemotherapy and the antioxidant capacity of the plasma was significantly higher after treatment. Cox regression analysis revealed a significant effect of KU86 activity on the survival rates of those patients who received anthracyclines as part of their treatment. The high clinical heterogeneity of metastatic breast cancer patients warrants further studies to clarify the role of DNA repair and systemic antioxidant capacities during chemotherapy.  相似文献   

2.
Combined chemotherapy is used for the treatment of a number of malignancies such as breast cancer. The target of these antineoplastic agents is nuclear DNA, although it is not restricted to malignant cells. The aim of the present study was to assess DNA damage in peripheral blood lymphocytes (PBLs) of breast cancer patients subjected to combined adjuvant chemotherapy (5-fluorouracil, epirubicin and cyclophosphamide, FEC), using a modified comet assay to detect DNA single-strand breaks (SSB) and double-strand breaks (DSB).

Forty-one female patients with advanced breast cancer before and after chemotherapy and 60 healthy females participated in the study. Alkaline and neutral comet assays were performed in PBLs according to a standard protocol, and DNA tail moment was measured by a computer-based image analysis system.

Breast cancer patients before treatment had higher increased background levels of SSB and DSB as compared to healthy women. During treatment, a significant increase in DNA damage was observed after the 2nd cycle, which persisted until the end of treatment. Eighty days after the end of treatment the percentage of PBLs with SSB and DSB remained elevated, but the magnitude of DNA damage (tail moment) returned to baseline levels. There was no correlation between PBL DNA damage and response to chemotherapy.

DNA-SSB and DSB in PBLs are present in cancer patients before treatment and increase significantly after combined chemotherapy. No correlation with response to adjuvant chemotherapy was found. Biomonitoring DNA damage in PBLs of cancer patients could help prevent secondary effects and the potential risks of developing secondary cancers.  相似文献   


3.
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.  相似文献   

4.
5.
Circulating tumor cells (CTCs) are seeds for cancer metastasis and are predictive of poor prognosis in breast cancer patients. Whether CTCs and primary tumor cells (PTCs) respond to chemotherapy differently is not known. Here, we show that CTCs of breast cancer are more resistant to chemotherapy than PTCs because of potentiated DNA repair. Surprisingly, the chemoresistance of CTCs was recapitulated in PTCs when they were detached from the extracellular matrix. Detachment of PTCs increased the levels of reactive oxygen species and partially activated the DNA damage checkpoint, converting PTCs to a CTC-like state. Inhibition of checkpoint kinases Chk1 and Chk2 in CTCs reduces the basal checkpoint response and sensitizes CTCs to DNA damage in vitro and in mouse xenografts. Our results suggest that DNA damage checkpoint inhibitors may benefit the chemotherapy of breast cancer patients by suppressing the chemoresistance of CTCs and reducing the risk of cancer metastasis.  相似文献   

6.
Breast cancer is currently among the most common cancers in women, with almost 200,000 new cases diagnosed annually. Dysregulation of DNA repair pathways allows cells to accumulate damage and eventually mutations, with a subsequent reduction in DNA repair capacity in breast tissue, leading to tumorigenesis. One component of the DNA damage repair pathway is RAD52 motif‐containing 1 (RDM1), but the specific role of RDM1 in breast cancer and the underlying mechanism remain unclear. Here, we examined the role played by RDM1 in breast cancer cell culture using the HBL100 and MCF‐7 breast cancer cell lines. Disruption of RDM1 reduced in vitro cell proliferation and promoted apoptosis. Knockdown of RDM1 also induced up‐regulation of p53 levels, whereas RAD51 and RAD52, both involved in DNA repair, were down‐regulated. In addition, the in vivo growth of RDM1‐deficient cells was significantly repressed, suggesting that RDM1 is a novel oncogenic protein in human breast cancer cells. This study reveals a link between the DNA damage response pathway and oncogenic functionality in breast cancer. Accordingly, therapeutic targeting of RDM1 is a potential treatment strategy for breast cancer and overcoming drug resistance.  相似文献   

7.
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.  相似文献   

8.
Combining natural products with chemotherapy and/or radiotherapy may increase the efficacy of cancer treatment. It has been hypothesized that natural products may inhibit DNA repair and sensitize cancer cells to DNA damage-based cancer therapy. However, the molecular mechanisms underlying these activities remain unclear. In this study, we found that diallyl disulfide (DADS), an organosulfur compound, increased the sensitivity of yeast cells to DNA damage and has potential for development as an adjuvant drug for DNA damage-based cancer therapy. We induced HO endonuclease to generate a specific DNA double-strand break (DSB) by adding galactose to yeast and used this system to study how DADS affects DNA repair. In this study, we found that DADS inhibited DNA repair in single-strand annealing (SSA) system and sensitized SSA cells to a single DSB. DADS impaired DNA repair by inhibiting the protein levels of the DNA resection-related proteins Sae2 and Exo1. We also found that the recruitment of MRX and the Mec1-Ddc2 complex to a DSB was prevented by DADS. This result suggests that DADS counteracts G2/M DNA damage checkpoint activation in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Only by elucidating the molecular mechanisms by which DADS influences DNA repair will we be able to discover new adjuvant drugs to improve chemotherapy and/or radiotherapy.  相似文献   

9.
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.  相似文献   

10.
Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.  相似文献   

11.
12.
Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR). Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells and the MMR-proficient HCT 116 cells with hMLH1 complementation to investigate the role of hMLH1 in selenium-induced DNA damage response, a tumorigenesis barrier. The ATM (ataxia telangiectasia mutated) protein responds to clastogens and initiates DNA damage response. We show that hMLH1 complementation sensitizes HCT 116 cells to methylseleninic acid, methylselenocysteine, and sodium selenite via reactive oxygen species and facilitates the selenium-induced oxidative 8-oxoguanine damage, DNA breaks, G2/M checkpoint response, and ATM pathway activation. Pretreatment of the hMLH1-complemented HCT 116 cells with the antioxidant N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl or the ATM kinase inhibitor KU55933 suppresses hMLH1-dependent DNA damage response to selenium exposure. Selenium treatment stimulates the association between hMLH1 and hPMS2 proteins, a heterodimer critical for functional MMR, in a manner dependent on ATM and reactive oxygen species. Taken together, the results suggest a new role of selenium in mitigating tumorigenesis by targeting the MMR pathway, whereby the lack of hMLH1 renders the HCT 116 colorectal cancer cells resistant to selenium-induced DNA damage response.  相似文献   

13.
The crucial 'flaw' in the existing treatment paradigm for non-small cell lung cancer (NSCLC) is the 'one size fits all approach'. Consequently, adjuvant chemotherapy is given to all patients to benefit a minority and, in the metastatic setting doublet chemotherapy only provides modest improvements in response rates and survival. A personalized approach of treatment selection is therefore desperately needed. Genetic information is stored in the chemical structure of DNA. To maintain the structural integrity of DNA, an intricate network of DNA repair systems have evolved. One of these is the nucleotide excision repair (NER), a highly versatile and sophisticated DNA damage removal pathway. We show here that this DNA repair mechanism is instrumental in defining prognosis and response to treatment. ERCC1, one of the proteins in this pathway, is measured to assess its functional status of the NER pathway. In patients with early stage NSCLC, low ERCC1 predicts for relapse and selects for patients who will benefit from adjuvant cisplatin-based chemotherapy. Conversely, ERCC1-positive resected patients have a better intrinsic prognosis and are not likely to benefit from platinum based chemotherapy. In a phase II trial in metastatic disease, we show that by tailoring chemotherapy using ERCC1 and RRM1 we can obtain 1-year survival of 60% (versus approximately 36% in historical controls) and response rates of 42% (versus 25% in historical controls). This approach is currently being validated in a prospective phase III trial. In the future, assessment of NER function may play a central role in NSCLC treatment decision making.  相似文献   

14.
Cancer stem cell (SC) chemoresistance may be responsible for the poor clinical outcome of non-small-cell lung cancer (NSCLC) patients. In order to identify the molecular events that contribute to NSCLC chemoresistance, we investigated the DNA damage response in SCs derived from NSCLC patients. We found that after exposure to chemotherapeutic drugs NSCLC-SCs undergo cell cycle arrest, thus allowing DNA damage repair and subsequent cell survival. Activation of the DNA damage checkpoint protein kinase (Chk) 1 was the earliest and most significant event detected in NSCLC-SCs treated with chemotherapy, independently of their p53 status. In contrast, a weak Chk1 activation was found in differentiated NSCLC cells, corresponding to an increased sensitivity to chemotherapeutic drugs as compared with their undifferentiated counterparts. The use of Chk1 inhibitors in combination with chemotherapy dramatically reduced NSCLC-SC survival in vitro by inducing premature cell cycle progression and mitotic catastrophe. Consistently, the co-administration of the Chk1 inhibitor AZD7762 and chemotherapy abrogated tumor growth in vivo, whereas chemotherapy alone was scarcely effective. Such increased efficacy in the combined use of Chk1 inhibitors and chemotherapy was associated with a significant reduction of NSCLC-SCs in mouse xenografts. Taken together, these observations support the clinical evaluation of Chk1 inhibitors in combination with chemotherapy for a more effective treatment of NSCLC.  相似文献   

15.
16.
5′,8-Cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) in their two diastereomeric forms, 5′S and 5′R, are tandem lesions produced by the attack of hydroxyl radicals to the purine moieties of DNA. Their formation has been found to challenge the cells’ repair machinery, initiating the nucleotide excision repair (NER) for restoring the genome integrity. The involvement of oxidatively induced DNA damage in carcinogenesis and the reduced capacity of some cancer cell lines to repair oxidised DNA base lesions, intrigued us to investigate the implication of these lesions in breast cancer, the most frequently occurring cancer in women. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we measured the levels of diastereomeric cdA’s and cdG’s in estrogen receptor-alpha positive (ER-α) MCF-7 and triple negative MDA-MB-231 breast cancer cell lines before and after exposure to two different conditions: ionising radiations and hydrogen peroxide, followed by an interval period to allow DNA repair. An increase at the measured levels of all four lesions, i.e. 5′S-cdA, 5′R-cdA, 5′S-cdG and 5′R-cdG, was observed either after γ-irradiation (5?Gy dose) or hydrogen peroxide treatment (300?μM) compared to the untreated cells (control), independently from the length of the interval period for repair. For comparison reasons, we also measured the levels of 8-oxo-2′-deoxyadenosine (8-oxo-dA), a well-known oxidatively induced DNA damage lesion and base excision repair (BER) substrate. The collected data indicate that MCF-7 and MDA-MB-231 breast cancer cells are highly susceptible to radiation-induced DNA damage, being mainly defective in the repair of these lesions.  相似文献   

17.
We compared DNA damage and the efficacy of its repair after genotoxic treatment with γ-radiation of lymphocytes and tissue cells isolated from patients with squamous cell carcinoma of head and neck (HNSCC) and healthy donors. Thirty-seven subjects with HNSCC and 35 healthy donors were enrolled in the study. The extent of DNA damage including oxidative lesions and efficiency of the repair were examined by alkaline comet assay. HNSCC cancer cells were more sensitive to genotoxic treatment and displayed impaired DNA repair. In particular, lesions caused by γ-radiation were repaired less effectively in metastasis of HNSCC than in healthy controls. The differences in radiation sensitivity of cancer and control cells suggested that DNA repair might be critical for HNSCC treatment. We conclude that γ-radiation might be considered as an effective therapeutic strategy for head and neck cancers, including patients in advanced stage of the disease with clear evidence of metastasis.  相似文献   

18.
Dermatomyositis is a rare disease characterised by inflammatory muscle affection and characteristic cutaneous changes. When occuring in a patient with cancer, dermatomyositis may indicate recurrence or progression and poor outcome. Herein, the treatment of metastatic breast cancer, metastatic pattern, characteristics of long-term survivors, and link between dermatomyositis and breast cancer are discussed and the literature reviewed. We report a 57-year old female patient with metastatic bilateral breast cancer whose ovarian and peritoneal relapse after long-term remission was disclosed by occurence of paraneoplastic dermatomyositis. The patient previously had a 15-year long disease free-period after primary treatment for breast cancer before onset of pulmonary dissemination. Following antracycline-based chemotherapy, the complete remission lasting another 15 years was accomplished. Dermatomyositis had been resolved upon induction of second-line taxane-based chemotherapy. After completion of six cycles of gemcitabine and paclitaxel chemotherapy, check-up revealed further progression. The patient subsequently underwent six cycles of third-line CAP chemotherapy (cyclofosfamide, doxorubicine, cisplatin) but disease progressed and oral capecitabine chemotherapy was initiated. The patient received four cycles of capecitabine followed by further vast progression and finally expired following massive pulmonary embolism. Our case stresses the need of thorough staging and check-up when dermatomyositis arises in patients with breast cancer, regardless of previous stable long-term complete remission. Furthermore, we believe that treatment with curative intent in young patients with metastatic breast cancer, who have good performance statuses and no comorbidities is required, because it is more likely to produce long-term complete remission. However, following disease relapse a poor outcome can be expected.  相似文献   

19.
NBS1, a protein essential for DNA double-strand break repair, relocalizes into subnuclear structures upon induction of DNA damage by ionizing radiation, forming ionizing radiation-induced foci. We compared radiation-induced NBS1 foci in peripheral blood lymphocytes (PBLs) from 46 sporadic breast cancer patients and 30 healthy cancer-free volunteers. The number of persistent radiation-induced NBS1 foci per nucleus at 24 h after irradiation for patients with invasive cancer was significantly higher than for normal healthy volunteers. The frequency of spontaneous chromosome aberration increased as the number of persistent radiation-induced NBS1 foci increased, indicating that the number of persistent radiation-induced NBS1 foci might be associated with chromosome instability. There was also an inverse correlation between the number of radiation-induced NBS1 foci and the activity of DNA-dependent protein kinase (DNA-PK), which plays an important role in the nonhomologous end-joining (NHEJ) pathway, another mechanism of DNA DSB repair, indicating a close interrelationship between homologous recombination (HR) and NHEJ in DNA DSB repair. In conclusion, the number of persistent radiation-induced NBS1 foci is associated with chromosomal instability and risk of sporadic breast cancer and hence might be used to select individuals for whom a detailed examination is necessary because of their increased susceptibility to breast cancer, although refinement of the techniques for technical simplicity and accuracy will be required for clinical use.  相似文献   

20.
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号