首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the mechanism of the cardiotoxic action of adriamycin (ADM), the participation of free radicals from ADM in cardiotoxicity was investigated through the protective action of glutathione (GSH) or by using electron spin resonance (ESR). Oxidation of ADM by horseradish peroxidase and H2O2 (HRP-H2O2) was blocked by GSH concentration dependently. Inactivation of creatine kinase (CK) induced during interaction of ADM with HRP-H2O2 was also protected by GSH. Other anthracycline antitumor drugs that have a p-hydroquinone structure in the B ring also inactivated CK, and GSH inhibited the inactivation of CK. These results suggest that ADM was activated through oxidation of the p-hydroquinone in the B ring by HRP-H2O2. Although ESR signals of the oxidative ADM B ring semiquinone were not detected, glutathionyl radicals were formed during the interaction of ADM with HRP-H2O2 in the presence of GSH. ADM may be oxidized to the ADM B ring semiquinone and then reacts with the SH group. However, ESR signals of ADM C ring semiquinone, which was reductively formed by xanthine oxidase (XO) and hypoxanthine (HX) under anaerobic conditions, were not diminished by GSH, but they completely disappeared with ferric ion. These results indicate that oxidative ADM B ring semiquinones oxidized the SH group in CK, but reductive ADM C ring semiquinone radicals may participate in the oxidation of lipids or DNA and not of the SH group.  相似文献   

2.
Although human cancers are widely treated with anthracycline drugs, these drugs have limited use because they are cardiotoxic. To clarify the cardiotoxic action of the anthracycline drug adriamycin (ADM), the inhibitory effect on succinate dehydrogenase (SDH) by ADM and other anthracyclines was examined by using pig heart submitochondrial particles. ADM rapidly inactivated mitochondrial SDH during its interaction with horseradish peroxidase (HRP) in the presence of H(2)O(2) (HRP-H(2)O(2)). Butylated hydroxytoluene, iron-chelators, superoxide dismutase, mannitol and dimethylsulfoxide did not block the inactivation of SDH, indicating that lipid-derived radicals, iron-oxygen complexes, superoxide and hydroxyl radicals do not participate in SDH inactivation. Reduced glutathione was extremely efficient in blocking the enzyme inactivation, suggesting that the SH group in enzyme is very sensible to ADM activated by HRP-H(2)O(2). Under anaerobic conditions, ADM with HRP-H(2)O(2) caused inactivation of SDH, indicating that oxidized ADM directly attack the enzyme, which loses its activity. Other mitochondrial enzymes, including NADH dehydrogenase, NADH oxidase and cytochrome c oxidase, were little sensitive to ADM with HRP-H(2)O(2). SDH was also sensitive to other anthracycline drugs except for aclarubicin. Mitochondrial creatine kinase (CK), which is attached to the outer face of the inner membrane of muscle mitochondria, was more sensitive to anthracyclines than SDH. SDH and CK were inactivated with loss of red color of anthracycline, indicating that oxidative activation of the B ring of anthracycline has a crucial role in inactivation of enzymes. Presumably, oxidative semiquinone or quinone produced from anthracyclines participates in the enzyme inactivation.  相似文献   

3.
Flavonoids protect against oxidative stress by scavenging free radicals. During this protection flavonoids are oxidized. The oxidized flavonoids formed are often reactive. Consequently, protection by flavonoids can result in the formation of toxic products. In this study the oxidation of 7-mono-O-(β-hydroxyethyl)rutoside (monoHER), which is a constituent of the registered drug Venoruton, was studied in the absence and presence of glutathione (GSH). MonoHER was oxidized by horseradish peroxidase/H2O2. Spectrophotometric and HPLC analysis showed that in the presence of GSH, a monoHER–GSH conjugate was formed, which was identified as 2′-glutathionyl monohydroxyethylrutoside by mass spectrometric analysis and 1H NMR. Preferential formation of this glutathione adduct in the B ring at C2′ was confirmed by molecular quantum chemical calculations. This conjugate was also detected in the bile fluid of a healthy volunteer after iv administration of monoHER, demonstrating its formation in vivo. These results indicate that in the process of offering protection against free radicals, monoHER is converted into an oxidation product that is reactive toward thiols. The formation of this thiol-reactive oxidation product is potentially harmful. Thus, the supposed beneficial effect of monoHER as an antioxidant may be accompanied by the formation of products with an electrophilic, toxic potential.  相似文献   

4.
The present investigation was made to evaluate biologically relevant quinones as possible catalysts in the generation of hydroxyl radicals from hydrogen peroxide and superoxide radicals. ESR spectra demonstrated that menadione, plastoquinone, and ubiquinone derivatives could all be reduced to their semiquinone forms by electron transfer from superoxide radicals. Reductive homolytic cleavage of H2O2 was observed to be dependent upon the presence of semiquinones in the reaction medium. Our data strongly support the concept that quinones normally involved in physiological processes may also play a role as catalysts of the Haber-Weiss reaction in the biological generation of hydroxyl radicals.  相似文献   

5.
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (?)-epigallocatechin gallate (EGCG), (?)-epigallocatechin (EGC), and (?)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O2?) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O2? oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O2? oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.  相似文献   

6.
Muraoka S  Miura T 《Life sciences》2003,72(17):1897-1907
Creatine kinase (CK) was used as a marker molecule to examine the side effects of damage to tissues by mefenamic acid, an effective drug to treat rheumatic and arthritic diseases, with horseradish peroxidase and hydrogen peroxide (HRP-H(2)O(2)). Mefenamic acid inactivated CK during its interaction with HRP-H(2)O(2). Also, diphenylamine and flufenamic acid caused a loss of CK activity, indicating the imino group, not substituent groups, in the phenyl rings have a crucial role in CK inactivation. Rapid change in mefenamic acid spectra was detected, suggesting that mefenamic acid is efficiently oxidized by HRP-H(2)O(2). Peroxidases oxidize xenobiotics to free radicals by a one-electron transfer. However, direct detection of mefenamic acid radicals by electron spin resonance (ESR) was unsuccessful. Reduced glutathione and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) in the reaction mixture containing mefenamic acid with HRP-H(2)O(2) produced ESR signals consistent with a DMPO-glutathionyl radical adduct. These results suggest that inactivation of CK is probably caused through formation of mefenamic acid radicals. Sulfhydryl groups and tryptophan residues of CK were diminished by mefenamic acid with HRP-H(2)O(2). Other SH enzymes, including alcohol dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase, were very sensitive to mefenamic acid with HRP-H(2)O(2). Inactivation of SH enzymes may explain some deleterious actions of mefenamic acid.  相似文献   

7.
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.  相似文献   

8.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

9.
The oxidation of NADH and accompanying reduction of oxygen to H2O2 stimulated by polyvanadate was markedly inhibited by SOD and cytochrome c. The presence of decavanadate, the polymeric form, is necessary for obtaining the microsomal enzyme-catalyzed activity. The accompanying activity of reduction of cytochrome c was found to be SOD-insensitive and therefore does not represent superoxide formation. The reduction of cytochrome c by vanadyl sulfate was also SOD-insensitive. In the presence of H2O2 all the forms of vanadate were able to oxidize reduced cytochrome c, which was sensitive to mannitol, tris and also catalase, indicating H202-dependent generation of hydroxyl radicals. Using ESR and spin trapping technique only hydroxyl radicals, but not superoxide anion radicals, were detected during polyvanadate-dependent NADH oxidation.  相似文献   

10.
Cysteine or cystine was earlier shown to multiply enhance the toxic effect of hydrogen peroxide on Escherichia coli cells. In the present work, the treatment of E. coli with H2O2 in the presence of cystine increased fivefold the level of extracellular oxidized glutathione (GSSGout) and decreased fivefold the GSH/GSSGout ratio (from 16.8 to 3.6). The same treatment of cells with deficiency in glutathione oxidoreductase (GOR) resulted in even more severe oxidation of GSHout, so that the level of oxidized glutathione exceeded that of reduced glutathione and the GSH/GSSGout ratio decreased to 0.4. Addition of cystine to the GOR deficient cells resulted in significant oxidation of extracellular glutathione even in the absence of oxidant and in tenfold increase in intracellular oxidized glutathione along with a decrease in the GSH/GSSGout ratio from 282 to 26. However, in the cytoplasm of wild type cells, the level of oxidized glutathione (GSSGin) was changed insignificantly and the GSH/GSSGin ratio increased by 26% (from 330 to 415). Data on glutathione status and cystine reduction in the E. coli gsh and gor mutants suggested that exogenous cystine at first should be reduced with extracellular GSH outside the cells and then imported into them. The high toxicity of H2O2 in the presence of cystine resulted in disorders of membrane functions and inhibition of the expression of genes including those responsible for neutralization of oxidants and DNA repair.__________Translated from Biokhimiya, Vol. 70, No. 8, 2005, pp. 1119–1129.Original Russian Text Copyright © 2005 by Smirnova, Muzyka, Oktyabrsky.  相似文献   

11.
Ryu B  Himaya SW  Qian ZJ  Lee SH  Kim SK 《Peptides》2011,32(4):639-647
Two new peptides derived from seaweed pipefish Syngnathus schlegeli, SPP-1(QLGNLGV) and SPP-2 (SVMPVVA) were assessed for their ability to prevent hydrogen peroxide induced oxidative stress in human dermal fibroblasts (HDFs). Both peptides showed a significant hydroxyl radical scavenging activity when tested by ESR technique. And also the peptides effectively suppressed the hydrogen peroxide induced ROS production and DNA damage in HDF cells. Furthermore the two peptides increase the protein expression levels of intracellular antioxidant enzymes SOD1, GSH and catalase in hydrogen peroxide stressed HDF cells. At the cellular signaling level, SPPs block the NF-κB activation which may lead to the reduction of oxidative stress mediated damage of HDF cells. These finding indicate the potential antioxidant effects of SPPs as response to H2O2 stimulation.  相似文献   

12.
《Free radical research》2013,47(8):657-663
Abstract

Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO4(NH4)2SO4 irradiated with 436 nm visible light (7.8 J/cm2). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (1O2) is involved in the radical formation or not, ESR measurement was performed for the standard D2O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO4 in D2O. The ESR peak height of the standard D2O reaction increased to 169 ± 24% of the control. Thus, 1O2 seems to be involved in the formation of the radicals because D2O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with 1O2. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.  相似文献   

13.
2 O2 when the brown scales were suspended in water. Brown components isolated from the brown scales also transformed molecular oxygen into H2O2. During the autooxidation process, absorbance in the visible region was increased. On acid hydrolysis of the brown fraction, 2,4,6-trihydroxyphenylglyoxylic acid, 3,4-dihydroxybenzoic acid and the quinone form of benzoic acid were detected. In addition, glucose was detected as a sugar. 3,4-Dihydroxybenzoic acid was preferentially oxidized during autooxidation of the brown fraction. One of the oxidation products was the quinone form. Stable electron spin resonance (ESR) signals were detected in the brown fraction. New ESR signals appeared on oxidation of the brown fraction by hexacyanoferrate (III). One of the newly formed radicals seemed to have a 3,4-dihydroxyphenyl group. Based on these results, possible structures, mechanism of H2O2 formation and biological significance of the brown components are discussed. Received 11 April 2001/ Accepted in revised form 3 August 2001  相似文献   

14.
GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form a DMPO-glutathionyl radical adduct detected by ESR spectroscopy. On the other hand, quercetin and luteolin (flavonoids that contain a catechol B ring) or kaempferol depleted GSH stoichiometrically without forming a thiyl radical or GSSG. Quercetin, luteolin, and kaempferol formed mono-GSH and bis-GSH conjugates, whereas apigenin and naringenin did not form GSH conjugates. MS/MS electrospray spectroscopy showed that mono-GSH conjugates for quercetin and luteolin had peaks at m/z 608 [M + H](+) and m/z 592 [M + H](+) in the positive-ion mode, respectively. (1)H NMR spectroscopy showed that the GSH was bound to the quercetin A ring. Spectral studies indicated that at a physiological pH the luteolin-SG conjugate was formed from a product with a UV maximum absorbance at 260 nm that was reducible by potassium borohydride. The quercetin-SG conjugate or kaempferol-SG conjugate on the other hand was formed from a product with a UV maximum absorbance at 335 nm that was not reducible by potassium borohydride. These results suggest that GSH was oxidized by apigenin/naringenin phenoxyl radicals, whereas GSH conjugate formation involved the o-quinone metabolite of luteolin or the quinoid (quinone methide) product of quercetin/kaempferol.  相似文献   

15.
Short-term treatment of potato tuber (Solanum tuberosum L.) dises with CdCl2 (1mM) induced an oxidative stress, manifested by higher levels of H2O2, and activated the synthesis of phytochclatins ((γ-Glu-Cys)n-Gly): PC2, PC3 and PC4. If in the tissues with a lower GSH level, the oxidative stress was induced by treatment with 3-aminotriazol (AT), or with AT and H2O2, the elevation of H2O2 and GSH levels and then some accumulation of thiols, including PC2, PC3 and PC4, were observed. However, this increase of PC concentration was considerably lower when compared with the effects brought about by Cd+2 treatment. If such a procedure of evoking subsequent moderate oxidative stress in tissues preceded Cd-treatment, a marked limitation of PC synthesis was observed. The presented results support the role of H2O2 as the second messenger in activating GSH synthesis and thus suggest a possibility of redox type regulation mechanism of PCs synthesis.  相似文献   

16.
Extended exposure of Escherichia coli to temperatures above and below their growth optimum led to significant changes in oxidant production and antioxidant defense. At 20 °C an increase in the intracellular H2O2 concentration and oxidized glutathione (GSSG) level was observed against a background of low levels of reduced glutathione (GSH) and decreased catalase and glutathione reductase (GOR) activities. The intracellular H2O2 and GSSG concentrations had minimal values at 30 and 37 °C, but rose again at 42 °C, suggesting that oxidative processes were intensified at high temperatures. An increase in temperature from 20 to 42 °C led to an elevation in the oxygen respiration rate and superoxide production; a 5-fold increase in the intracellular GSH concentration and in the GSH:GSSG ratio occurred simultaneously. Catalase HPI and GOR activities were elevated 4.4- and 1.5-fold, respectively. Prolonged exposure to sublethal temperatures facilitated an adaptation to subsequent oxidative stress produced by the addition of H2O2.  相似文献   

17.
Rosebush (Rosa “Radrazz”) plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid–Glutathione (AsA–GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA–GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth.

Light-induced bud outgrowth in rosebush results from cytokinin-mediated peroxide scavenging and glutathione metabolism stimulation.  相似文献   

18.
The photoreduction of 2′-7′-dichlorofluorescein (DCF) was investigated in buffer solution using direct electron spin resonance (ESR) and the ESR spin-trapping technique. Anaerobic studies of the reaction of DCF in the presence of reducing agents demonstrated that during visible irradiation (λ > 300 nm) 2′-7′-dichlorofluorescein undergoes one-electron reduction to produce a semiquinone-type free radical as demonstrated by direct ESR. Spin-trapping studies of incubations containing DCF, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and either reduced glutathione (GSH) or reduced NADH demonstrate, under irradiation with visible light, the production of the superoxide dismutase-sensitive DMPO/·OOH adduct. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed in a light-dependent process. The semiquinone radical of DCF, when formed in an aerobic system, is immediately oxidized by oxygen, which regenerates the dye and forms superoxide.  相似文献   

19.
Neurotoxic properties of L-dopa and dopamine (DA)-related compounds were assessed in human neuroblastoma SH-SY5Y cells with reference to their structural relationship. L-Dopa and its metabolites containing two free hydroxyl residues on their benzene ring showed toxicity in the cell, which was prevented by superoxide dismutase (SOD) and reduced glutathione (GSH), but not by catalase. Furthermore, a synthetic derivative of DA, 3-hydroxy-4-methoxyphenethylamine (HMPE) containing methoxy residue at position 4 in the benzene ring, exerted partial cytotoxicity, which was not prevented by SOD, GSH or catalase. However, the metabolites containing methoxy residue at position 3 failed to show a toxic effect in the SH-SY5Y cells. Moreover, DA induced apoptotic cell death, which was observed by nuclear and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining and measurement of caspase-3 activity; this compound up-regulated apoptotic factor p53 while down-regulating anti-apoptotic factor Bcl-2. In the cell-free in vitro electron spin resonance (ESR) spectrometry, DA possessing two hydroxyl groups showed generation of DA-semiquinone radicals, which were markedly prevented by addition of SOD or GSH but not by catalase. On the other hand, methylation of one of the hydroxyl residues on the benzene ring of DA converted DA to an unoxidizable compound (3-MT or HMPE), and caused it to lose the property to produce semiquinone radicals. It has been previously reported that SOD acting as a superoxide:semiquinone oxidoreductase prevents quinone formation, and that reduced GSH through forming a complex with DA-quinone prevents quinone binding to the thiol group of the intact protein. Therefore, the present results suggest that DA and its metabolites containing two hydroxyl residues exert cytotoxicity mainly due to generation of highly reactive quinones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号