首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed at evaluating OS in an amyotrophic quadricipital syndrome with cardiac impairment in a family of 80 members with a mutation in lamin A/C gene. Twelve patients had cardiac involvement (5 cardiac and skeletal muscles impairment). OS was evaluated in blood samples (thiobarbituric acid-reactive substances (TBARS), carbonylated proteins (PCO)) 6 “affected patients” with phenotypic and genotypic abnormalities without heart failure and 3 “healthy carrier” patients. OS was higher in affected patients than in healthy, as shown by the higher TBARS and PCO values. Patients with cardiac and peripheral myopathy exhibited a higher OS than patients with only cardiac disease (TBARS: 1.73 ± 0.05 vs. 1.51 ± 0.04 mmol/l (p = 0.051), PCO: 2.73 ± 0.34 vs. 0.90 ± 0.10 nmol/mg protein (p = 0.47)), and with healthy carriers patients (TBARS: 1.73 ± 0.05 vs. 1.16 ± 0.14 mmol/l (p = 0.05), PCO: 2.73 ± 0.34 vs. 0.90 ± 0.20 nmol/mg protein (p = 0.47)).

OS may thus contribute to the degenerative process of this laminopathy. ROS production occurs, prior to heart failure symptoms. We suggest that the extent activation may also promote the variable phenotypic expression of the disease.  相似文献   

2.
Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb-like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C-terminal globular domain of lamins A and C, different from the FPLD-related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide-mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C-terminal domain with DNA as shown by gel retardation assays and causes a DNA-interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C-terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.  相似文献   

3.
Psoriasis is a skin chronic inflammatory disease with a complex aetiology. It is characterised by the imbalance of environmental, genetic, and immunologic factors. Reactive oxygen species (ROS) could damage the cell components. The antioxidant system defends the body against ROS; a malfunction of the antioxidant system, together with an increased production of ROS, is involved in the pathogenesis of several diseases such as psoriasis. The purpose of this systematic review is to give an updated scenario about oxidative stress involvement in the psoriatic disease to identify useful biomarkers and to propose innovative therapies. A total of 28 studies were identified. Although several molecules were demonstrated being associated with psoriasis, only a little group resulted being eligible as disease biomarker [malonyldialdehyde (MDA), total oxidative stress, and oxidative stress index]. However, only MDA seems to be the best candidate for a clinical screening of psoriasis patients since it is intimately linked to Psoriasis Area Severity Index. Data suggest that current therapies with drugs, a healthy lifestyle, and the integration of a diet rich in antioxidants help to reduce the damage of oxidative stress caused by psoriasis, especially at the level of the skin. As much as we know, this is the first systematic review evaluating the oxidative stress role in psoriasis.  相似文献   

4.
Xenotransplantation (XT) reveals a growing interest for the treatment of cardiomyopathy. The major barrier is an acute vascular rejection due to an acute humoral rejection. This pathogenesis is a difficult issue and in order to elaborate means for its prevention, we analysed the implication of oxidative stress (OS) on hearts from mini-pigs followed by reperfusion with either autologous or human blood in an attempt to simulate xenotransplantation.

About 14 hearts were studied after a Langendorff blood reperfusion: allografts with autologous blood (n = 7) or xenografts with human blood (n = 7). Blood samples were drawn from the coronary sinus to assess ischemia and OS.

In xenografts, arrhythmias occurred more frequently (p < 0.01, left ventricular systolic pressure decreased more significantly (p < 0.05), thiobarbituric acid-reactive substances concentrations increased at 30 min (0.7 ± 0.1 vs. 2.4 ± 0.3 mmol/l; p < 0.05) while vitamin A levels decreased (p < 0.05).

XT was associated with a significant increase in ischemic injury and OS production. OS might play an eminent role in hyperacute humoral rejection.  相似文献   

5.
This study aimed to detect the most deleterious ROS for goat sperm and then supplemented the extender with a proper antioxidant. For this, 12 adult goats (aged 1–7) were used. Fresh samples were submitted to challenge with different ROS (superoxide anion, hydrogen peroxide, and hydroxyl radical) and malondialdehyde (MDA—toxic product of lipid peroxidation). After experiment 1, sperms were cryopreserved in extenders supplemented to glutathione peroxidase (Control: 0?UI/mL; GPx1: 1?UI/mL; GPx5: 5?UI/mL, and GPx10: 10?UI/mL) and catalase (Control: 0?UI/mL; CAT60: 60?UI/mL; CAT120: 120?UI/mL, and CAT240: 240?UI/mL). Each sample was evaluated by motility, plasma membrane integrity (eosin/nigrosin), acrosome integrity (fast green/rose bengal), sperm morphology, assay of the sperm chromatin structure, mitochondrial activity (3,3-diaminobenzidine), and measurement of lipid peroxidation (thiobarbituric acid reactive substances [TBARS]). It was possible to observe a mitochondrial dysfunction (DAB—Class IV) and low membrane integrity after hydrogen peroxide action. However, the high rates of TBARS were observed on hydroxyl radical. CAT240 presents the lower percentage of plasma membrane integrity. It was possible to attest that hydrogen peroxide and hydroxyl radical are the more harmful for goat sperm. Antioxidant therapy must be improving perhaps using combination between antioxidants.  相似文献   

6.
《Free radical research》2013,47(5):346-356
Abstract

Oxidative response regulates many physiological response in human health, but if not properly regulated it could also lead to a number of deleterious effects. The importance of oxidative stress injury depends on the molecular target, the severity of the stress, and the mechanism by which the oxidative stress is imposed: it has been implicated in several diseases including cancer, neurodegenerative diseases, malaria, rheumatoid arthritis and cardiovascular and kidney disease. Most of the common diseases, such as hypertension, atherosclerosis, heart failure, and renal dysfunction, are associated with vascular functional and structural alterations including endothelial dysfunction, altered contractility, and vascular remodeling. Common to these processes is increased bioavailability of reactive oxygen species (ROS), decreased nitric oxide (NO) levels, and reduced antioxidant capacity. Oxidative processes are up-regulated also in patients with chronic renal failure (CRF) and seem to be a cause of elevated risk of morbidity and mortality in these patients.

In this review, we highlight the role of oxidative stress in cardiovascular and renal disease.  相似文献   

7.

Background

Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of LmnaH222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in LmnaH222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit.

Methods

Male LmnaH222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated.

Results

Treatment of LmnaH222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional shortening at 20 weeks of age.

Conclusions

Both ACE inhibition and MEK1/2 inhibition have beneficial effects on left ventricular function in LmnaH222P/H222P mice and both drugs together have a synergistic benefit when initiated after the onset of left ventricular dysfunction. These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor in addition to standard of care in patients with dilated cardiomyopathy caused by LMNA mutations.  相似文献   

8.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   

9.
《Free radical research》2013,47(11):1339-1345
Abstract

Ulcerative colitis is an idiopathic, chronic and relapsing inflammatory bowel disease, which elicits the risk of colorectal cancer, the third most common malignancy in humans. It has been known for a long time that oxidative stress is a major pathogenic factor in the inflamed tissue that can pave the way towards DNA damage and carcinogenesis. However, the DNA damage produced due to oxidative stress in the inflamed tissue is not limited to the local site but extends globally, thereby augmenting the risk of global carcinogenesis. Targeting oxidative stress may provide an exciting avenue to combat inflammation-associated local as well as global DNA damage and the subsequent carcinogenesis. The present review portrays the role of oxidative stress in the pathogenesis of ulcerative colitis and the associated local as well as global DNA damage, which may lead to carcinogenesis.  相似文献   

10.
《Free radical research》2013,47(12):1159-1166
Abstract

Various oxidative stress markers have been measured to evaluate the status of heart failure (HF). However, the relationships between these markers and the aetiology of HF have not been fully investigated. This study compared 8-hydroxy-2′-deoxyguanosine (8-OHdG) and biopyrrins levels in patients with ischemic and non-ischemic HF. Study subjects were divided into a coronary artery disease (CAD) group (n=70), a non-CAD group (n=61) and a control group (n=33). In the CAD group, 8-OHdG and biopyrrins levels increased with the severity of the New York Heart Association (NYHA) functional class and log BNP levels correlated with 8-OHdG and biopyrrins levels. However, non-CAD patients with NYHA class III/IV had significantly lower 8-OHdG levels than CAD patients with NYHA class III/IV and the levels did not correlate with log BNP levels. In the CAD group, 8-OHdG levels reflected the severity of atherosclerosis. These results indicate that the properties of oxidative stress markers should be carefully taken into consideration for the assessment of HF status.  相似文献   

11.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the KM of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the KM observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   

12.
Phenotypic features appeared after puberty in female, but not male subjects with familial partial lipodystrophy (FPLD). We have studied anthropometrical, clinical, and metabolic gender differences in a Spanish family with FPLD resulting from a lamin A/C gene mutation, R482W. Genetic studies were carried out on 14 members of the family. In eleven heterozygous mutation carriers (6 men, 5 women), body composition was evaluated by bioelectric impedance analysis, skin-fold measurements were taken, and lipid profiles were drawn. Moreover, plasma glucose, insulin, and leptin were determined, and insulin resistance and beta cell response were evaluated using HOMA. Ten healthy women and 10 healthy men matched for age and body mass index were used as control group. Body composition was similar in these patients to normal people. However, skin-folds of extremities were thinner in FPLD women compared with those of control subjects, but not in men. The affected women, but not men, showed hypoleptinaemia, insulin resistance, and beta-cell hyperresponse compared with unaffected women. The lipid profile was normal in the young patients, irrespective of sex. Type 2 diabetes mellitus and hypertriglyceridaemia were detected in old and overweight patients only. In conclusion, molecular diagnosis allows us to demonstrate that women with FPLD present both adipose tissue and biochemical abnormalities early in life, and this did not happen in affected men.  相似文献   

13.
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.  相似文献   

14.
The lifespan of Caenorhabditis elegans can be extended by the administration of synthetic superoxide dismutase/catalase mimetics (SCMs) without any effects on development or fertility. Here we demonstrate that the mimetics, Euk-134 and Euk-8, confer resistance to the oxidative stress-inducing agent, paraquat and to thermal stress. The protective effects of the compounds are apparent with treatments either during development or during adulthood and are independent of an insulin/IGF-I-like signalling pathway also known to affect thermal and oxidative stress resistance. Worms exposed to the compounds do not induce a cellular stress response and no detrimental effects are observed.  相似文献   

15.
Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype–phenotype correlation according to relevant literature.  相似文献   

16.
This study was conducted to establish the functions and oxidative stress status in leukocytes of adult patients with nephrotic syndrome. Thirty adult patients with nephrotic syndrome and 32 controls were included. Phagocytosis ability, the killing ability of the micro-organism phagosited of polymorphonuclear leukocytes (PMNL) and monocytes, along with oxidative stress parameters of PMNLs were assessed. There was no statistically significant difference in phagocytosis function of PMNLs and monocytes of patients when compared to those of controls. PMNL burst activities of the patient and control groups also showed no difference; however, the monocyte burst activities of patients were significant (p = 0.012). The glutathione peroxidase (GSH-Px) activities in PMNLs of the patients with nephrotic syndrome were significantly higher (p = 0.026) when compared to those of controls. In comparison with those of the control subjects, the patients had also higher selenium levels in their PMNLs (p < 0.001). Although PMNL malonyldialdehyde (MDA) levels of the patients seem to be higher than those of controls, the difference had no statistical significance (p = 0.071). Conclusively, in the patients with nephrotic syndrome, PMNLs appear to be exposed to an oxidative stress as indicated by their increased GSH-Px activities and selenium content. However, PMNLs in nephrotic syndrome patients seem to be coping with the insulting oxidative stress, as suggested by their near-normal MDA productions. Furthermore, these data suggest that nephrotic syndrome appears not to have an influence on phagocytosis and killing abilities of granulocytes and monocytes as long as these cells can overcome the oxidative stress to which they are exposed in this disease.  相似文献   

17.
Angiotensin II (Ang II) plays an important role in the onset and development of cardiac remodelling associated with changes of autophagy. Angiotensin1‐7 [Ang‐(1‐7)] is a newly established bioactive peptide of renin–angiotensin system, which has been shown to counteract the deleterious effects of Ang II. However, the precise impact of Ang‐(1‐7) on Ang II‐induced cardiomyocyte autophagy remained essentially elusive. The aim of the present study was to examine if Ang‐(1‐7) inhibits Ang II‐induced autophagy and the underlying mechanism involved. Cultured neonatal rat cardiomyocytes were exposed to Ang II for 48 hrs while mice were infused with Ang II for 4 weeks to induce models of cardiac hypertrophy in vitro and in vivo. LC3b‐II and p62, markers of autophagy, expression were significantly elevated in cardiomyocytes, suggesting the presence of autophagy accompanying cardiac hypertrophy in response to Ang II treatment. Besides, Ang II induced oxidative stress, manifesting as an increase in malondialdehyde production and a decrease in superoxide dismutase activity. Ang‐(1‐7) significantly retarded hypertrophy, autophagy and oxidative stress in the heart. Furthermore, a role of Mas receptor in Ang‐(1‐7)‐mediated action was assessed using A779 peptide, a selective Mas receptor antagonist. The beneficial responses of Ang‐(1‐7) on cardiac remodelling, autophagy and oxidative stress were mitigated by A779. Taken together, these result indicated that Mas receptor mediates cardioprotection of angiotensin‐(1‐7) against Ang II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress.  相似文献   

18.
It has been observed that H9c2 cardiac cells cultured in physiologic solutions exhibit delayed cell death after repeated medium replacements, of which the cause was the relatively mild osmotic challenges during the renewal of the culture medium. Interestingly, the cell damage was associated with altered intracellular GSH homeostasis. Therefore, this study attempted to elucidate the effects of osmotic stress on GSH metabolism. In cells subjected to osmotic stress by lowering the NaCl concentration of the medium, the cell swelling was rapidly counterbalanced, but the intracellular GSH content was significantly lower in 3 h. Meanwhile, the ratio of GSH-to-GSSG was not affected. As expected, osmotic stress also increased the sensitivity to H2O2, which was attributable to the decrease of GSH content. The decrease of GSH content was similarly evident when the synthetic pathways of GSH were blocked by BSO or acivicin. It was concluded that osmotic stress induced the decrease of intracellular GSH content by increased consumption and this loss of GSH rendered the cells susceptible to a subsequent oxidative stress.  相似文献   

19.
《Biomarkers》2013,18(6):471-480
Abstract

Context: Oxidative balance score (OBS) is a composite measure of multiple pro- and antioxidant exposures.

Objective: To investigate associations of OBS with F2-isoprostanes (FIP), mitochondrial DNA copy number (mtDNA), and fluorescent oxidative products (FOP), and assess inter-relationships among the biomarkers.

Methods: In a cross-sectional study, associations of a thirteen-component OBS with biomarker levels were assessed using multivariable regression models.

Results: Association of OBS with FIP, but not with FOP, was in the hypothesized direction. The results for mtDNA were unstable and analysis-dependent. The three biomarkers were not inter-correlated.

Conclusions: Different biomarkers of oxidative stress may reflect different biological processes.  相似文献   

20.
《Free radical research》2013,47(12):1482-1489
Rheumatoid arthritis is an inflammatory, autoimmune disease where oxidative stress has been proposed to contribute to the joint tissue damage. To establish whether measurement of the redox status in blood mirrors the oxidant status at sites of inflammation in patients with rheumatoid arthritis, we concomitantly examined their oxidant status by spectrophotometry and/or flow cytometry. The basal levels of total reactive oxygen species (ROS), superoxide and hydroxyl radicals were significantly raised in neutrophils sourced from peripheral blood and synovial infiltrate, as also showed a strong positive correlation; however, there was no major increase in the reactive nitrogen species RNS generated in monocytes from both sources. Furthermore, raised levels of superoxide in neutrophils of synovial infiltrate showed a positive correlation with NADPH oxidase activity in synovial fluid. Additionally, as ROS generated in both peripheral blood and synovial infiltrate correlated positively with both DAS 28 and CRP/anti-CCP levels, its measurement can serve as an indirect measure of the degree of inflammation in patients with RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号