首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In U937 and mouse myeloma cells, protein hydroperoxides are the predominant hydroperoxide formed during exposure to AAPH or gamma irradiation. In lipid-rich human monocyte-derived macrophages (HMDMs), we have found the opposite situation. Hydroperoxide measurements by the FOX assay showed the majority of hydroperoxides formed during AAPH incubation were lipid hydroperoxides. Lipid hydroperoxide formation began after a four hour lag period and was closely correlated with loss of cell viability. The macrophage pterin 7,8-dihydroneopterin has previously been shown to be a potent scavenger of peroxyl radicals, preventing oxidative damage in U937 cells, protein and lipoprotein. However, when given to HMDM cells, 7,8-dihydroneopterin failed to inhibit the AAPH-mediated cellular damage. The lack of interaction between 7,8-dihydroneopterin and AAPH peroxyl radicals suggests that they localize to separate cellular sites in HMDM cells. Our data shows that lipid peroxidation is the predominant reaction occurring in HMDMs, possibly due to the high lipid content of the cells.  相似文献   

2.
Monocyte cells are exposed to a range of reactive oxygen species (ROS) when they are recruited to a site of inflammation. In this study, we have examined the damage caused to the monocyte-like cell line U937 by peroxyl radicals and characterised the protective effect of the macrophage synthesised compound 7,8-dihydroneopterin.Exposure of U937 cells to peroxyl radicals, generated by the thermolytic breakdown of 2,2'-azobis(amidinopropane) dihydrochloride (AAPH), resulted in the loss of cell viability as measured by thiazolyl blue (MTT) reduction, and lactate dehydrogenase (LDH) leakage. The major form of cellular damage observed was cellular thiol loss and the formation of reactive protein hydroperoxides. Peroxyl radical oxidation of the cells only caused a small increase in cellular lipid oxidation measured. Supplementation of the media with increasing concentrations of 7,8-dihydroneopterin significantly reduced the cellular thiol loss and inhibited the formation of the protein hydroperoxides. High performance liquid chromatography (HPLC) analysis showed 7,8-dihydroneopterin was oxidised by both peroxyl radicals and preformed protein hydroperoxides to predominately 7,8-dihydroxanthopterin.The possibility that 7,8-dihydroneopterin is a cellular antioxidant protecting macrophage proteins during inflammation is discussed.  相似文献   

3.
The atherosclerotic plaque is an inflammatory site where macrophage cells are exposed to cytotoxic oxidised low density lipoprotein (oxLDL). Interferon-gamma released from T-cells results in macrophage synthesis of 7,8-dihydroneopterin which has antioxidant and cytoprotective activity. Using the human derived monocyte-like U937 and THP-1 cell lines, we examined whether 7,8-dihydroneopterin could inhibit the cytotoxic effect of oxLDL. In U937 cells, oxLDL caused a dramatic loss of cellular glutathione and caspase independent cell death associated with phosphatidylserine exposure on the plasma membrane. 7,8-Dihydroneopterin completely blocked the cytotoxic effect of oxLDL. In contrast, oxLDL initiated THP-1 cell apoptosis with reduction in cellular thiols, caspase-3 activation and plasma membrane phosphatidylserine exposure. 7,8-Dihydroneopterin was unable to alter these processes or restore the THP-1 cellular thiol content. 7,8-Dihydroneopterin did provide some protection to both THP-1 cells and U937 cells from AAPH derived peroxyl radicals. The preincubation of oxLDL with 7,8-dihydroneopterin did not reduce cytotoxicity, suggesting that 7,8-dihydroneopterin may be acting in U937 cells by scavenging intracellular oxidants generated by the oxLDL. The data show that muM levels of 7,8-dihydroneopterin may prevent oxLDL mediated cellular death within atherosclerotic plaques.  相似文献   

4.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

5.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2′-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble α-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

6.
The formation of oxidised low density lipoprotein (LDL) within the atherosclerotic plaque appears to be a factor in the development of advanced atherosclerotic plaques. LDL oxidation is dependent on the balance of oxidants and antioxidants within the intima. In addition to producing various oxidants, human macrophages release 7,8-dihydroneopterin which in vivo is oxidised to the inflammation marker neopterin. Using macrophage-like THP-1 cells and human monocyte-derived macrophages, we demonstrate that 7,8-dihydroneopterin is a potent inhibitor of cell-mediated LDL oxidation. 7,8-Dihydroneopterin scavenges the chain propagating lipid peroxyl radical, inhibiting both lipid and protein hydroperoxide formation. A significant amount of the hydroperoxide formed during cell-mediated LDL oxidation was protein hydroperoxide. 7,8-Dihydroneopterin oxidation to 7,8-dihydroxanthopterin was only observed in the presence of both cells and LDL, showing that 7,8-dihydroneopterin had no effect on initiating oxidant generation by the cells. 7,8-Dihydroneopterin did not regenerate alpha-tocopherol but competed with it for the lipid peroxyl radical. Although stimulation of both cell types with gamma-interferon failed to produce sufficient 7,8-dihydroneopterin to inhibit LDL oxidation in tissue culture, analysis of advanced atherosclerotic plaque removed from patients showed that total neopterin levels could reach low micromolar concentrations. This suggests that 7,8-dihydroneopterin synthesis by macrophages could play a significant role in the development of atherosclerotic plaques.  相似文献   

7.
Neopterin and its reduced form, 7,8 dihydroneopterin afe pteridines released from macrophages and monocytes when stimulated with interferon gamma in vivo. The function of this response is unknown though there is an enormous amount of information available on the use of these compounds as clinical markers of monocyte/macrophage activation. We have found that in vitro 7,8-dihydroneopterin dramatically increases, in a dose dependent manner, the lag time of low density lipoprotein oxidation mediated by Cu++ ions or the peroxyl radical generator 2,2'-azobis (2-amidino propane) dihydrochloride (AAPH). 7,8-Dihydroneopterin also inhibits AAPH mediated oxidation of linoleate. The kinetic of the inhibition suggests that 7,8-dihydroneopterin is a potent chain breaking antioxidant which functions by scavenging lipid peroxyl radicals. No anti-oxidant activity was observed in any of the oxidation systems studied with the related compounds neopterin and pterin.  相似文献   

8.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

9.
Abstract

Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2′ azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by β-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

10.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   

11.
Proteins are major initial cell targets of hydroxyl free radicals   总被引:2,自引:0,他引:2  
The principal aim of the current study was to identify the initial cell targets of hydroxyl free radicals. Our recent report showed that proteins were oxidized before lipids in U937 cells exposed to peroxyl radicals. Extending this finding, we investigated whether a similar oxidation sequence occurs in other lines of cells, whether hydroxyl radicals can also initiate cell protein oxidation, and whether DNA fragmentation is an early event in radical-induced cell damage. Mouse myeloma Sp2/0-Ag14 and U937 cells were exposed to hydroxyl radicals generated in solution by gamma irradiation and the formation of protein peroxides measured by a ferric-xylenol orange assay. No lipid peroxidation or DNA damage was evident by the time of significant formation of protein peroxides. DNA fragmentation was detectable after prolonged incubation at 37 degrees C and was characteristic of enzymatic action rather than of random scission by the radicals. Yields of protein hydroperoxides in the irradiated cells were independent of composition of the medium, suggesting that only the radicals produced within the cells or immediately near the cell surface were effective in oxidizing the cell proteins. The results are consistent with the hypothesis that proteins are major initial targets of free radicals in cells and suggest that treatments leading to the prevention of protein oxidation or to harmless reduction of protein peroxides is likely to result in alleviation of radical-induced biological damage.  相似文献   

12.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   

13.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

14.
Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO(*)) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage.  相似文献   

15.
R Labeque  L J Marnett 《Biochemistry》1988,27(18):7060-7070
Reaction of 10-hydroperoxyoctadec-8-enoic acid (10-OOH-18:1) (50 microM) with hematin (0.5 microM) in sodium phosphate buffer containing Tween 20 (200 microM) generates 10-oxooctadec-8-enoic acid, 10-oxodec-8-enoic acid (10-oxo-10:1), and 10-hydroxyoctadec-8-enoic acid in relative yields of 79, 4, and 17%, respectively. The product profile and relative distribution are unaffected by 1 mM butylated hydroxyanisole. Approximately 5% of the hydroperoxide isomerizes from the 10- to the 8-position. 10-Oxo-10:1 most likely arises via beta-scission of an intermediate alkoxyl radical to the aldehyde and the n-octyl radical. To test this, 10-hydroperoxyoctadeca-8,12-dienoic acid was reacted with hematin under identical conditions. 10-Oxooctadeca-8,12-dienoic acid, 10-oxodec-8-enoic acid, and 10-hydroxyoctadeca-8,12-dienoic acid are formed in relative yields of 50, 45, and 5%, respectively. The product ratios are constant with time and hydroperoxide to catalyst ratio and unaffected by inclusion of phenolic antioxidants. The higher yield of 10-oxo-10:1 from 10-OOH-18:2 compared to 10-OOH-18:1 is due to the higher rate of beta-scission of the intermediate alkoxyl radical from the former to the resonance-stabilized octenyl radical. Two products of reaction of the 2-octenyl radical with O2, octenal and octenol, were detected in 10% yield relative to 10-oxo-10:1. Inclusion of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol) led to epoxidation by both 10-OOH-18:1 and 10-OOH-18:2. Studies with isotopically labeled hydroperoxide or O2 indicated approximately 65% of the epoxide oxygen was derived from O2 and 35% from hydroperoxide oxygen, consistent with the involvement of peroxyl free radicals as the oxidizing agents. The available evidence indicates that hematin reduces the fatty acid hydroperoxides homolytically to alkoxyl radicals that are oxidized to ketones, reduced to alcohols, or undergo beta-scission to aldehydes. Carbon radicals generated during these reactions couple to O2, generating peroxyl free radicals that epoxidize BP-7,8-diol. The smaller percentage of epoxidation that results from hydroperoxide oxygen may arise from oxidation of the hydroperoxide group to peroxyl radicals or from heterolytic cleavage of the hydroperoxide to alcohol and an iron-oxo complex.  相似文献   

16.
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress.  相似文献   

17.
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxides stoichiometrically to yield fluorescent product DPPP oxide, was used as a fluorescent probe for lipid peroxidation in live cells. DPPP was successfully incorporated into U937 cells. Incorporation of DPPP into the cell membrane was confirmed by fluorescence microscopy. Reaction of DPPP with hydroperoxides was examined by monitoring increase in fluorescence intensity of the cell. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably react with DPPP, whereas hydrogen peroxide did not react with DPPP located in the membrane. Linear correlation between increase in fluorescence intensity and the amount of methyl linoleate hydroperoxide applied to the cell was observed. DPPP gave little effect on cell proliferation, cell viability or cell morphology for at least 3 d. DPPP oxide, fluorescent product of DPPP, was quite stable in the membrane of living cells for at least 2 d. Fluorescence of DPPP-labeled cells was measured after treating with diethylmaleate (DEM), or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH), or culturing with low serum content. These reagents and culture condition induced dose- and/or time-dependent increase in fluorescence. Addition of vitamin E effectively suppressed increase in fluorescence. When DPPP-labeled cells and DCFH-DA-labeled cells were treated with NO, H(2)O(2), AAPH, and DEM to compare the formation of hydoperoxides in the membrane and cytosol, distinct patterns of peroxide formation were observed. These results indicate that fluorescent probe DPPP is eligible for estimation of lipid peroxidation proceeding in the membrane of live cells, and use of this probe is especially advantageous in long-term peroxidation of the cell.  相似文献   

18.
There is growing evidence that proteins are early targets of reactive oxygen species, and that the altered proteins can in turn damage other biomolecules. In this study, we measured the effects of proteins on the oxidation of liposome phospholipid membranes, and the formation of protein hydroperoxides in serum and in cultured cells exposed to radiation-generated hydroxyl free radicals. Lysozyme, which did not affect liposome stability, gave 50% protection when present at 0.3 mg/ml, and virtually completely prevented lipid oxidation at 10 mg/ml. When human blood serum was irradiated, lipids were oxidized only after the destruction of ascorbate. In contrast, peroxidation of proteins proceeded immediately. Protein hydroperoxides were also generated without a lag period in hybrid mouse myeloma cells, while at the same time no lipid peroxides formed. These results are consistent with the theory that, under physiological conditions, lipid membranes are likely to be effectively protected from randomly-generated hydroxyl radicals by proteins, and that protein peroxyl radicals and hydroperoxides may constitute an important hazard to biological systems under oxidative stress.  相似文献   

19.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2′-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

20.
Membrane lipid peroxidation processes yield products that may react with proteins to cause oxidative modification. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. When exposed to lipid peroxidation products, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE) and lipid hydroperoxide, ICDH was susceptible to oxidative damage, which was indicated by the loss of activity and the formation of carbonyl groups. The structural alterations of modified enzymes were indicated by the change in thermal stability, intrinsic tryptophan fluorescence and binding of the hydrophobic probe 8-anilino 1-napthalene sulfonic acid. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), which induces lipid peroxidation in membrane, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed in U937 cells. Using immunoprecipitation and immunoblotting, we were able to isolate and positively identify HNE adduct in mitochondrial ICDH from AAPH-treated U937 cells. The lipid peroxidation-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号