首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A mutant rat GPX1 (a cytosolic predominant form), in which the selenocysteine residue in the catalytic center was replaced by cysteine, was prepared and an antibody against the mutant enzyme was raised. The resultant antibody specifically reacted with rat GPX1 and was, together with the Glutathione reductase (GR) antibody, used in a Western blot analysis and immunohistochemistry experiments. To elucidate the physiological coupling of these enzymes under oxidative stress which accompanies the birth, developmental changes of the protein levels and enzymatic activities of GR and GPX1 were examined for lungs and kidneys from prenatal fetus to adult rats. The expression of GR was already evident at the prenatal stage and remained high in lungs at all stages. However, GR activity in kidneys gradually increased after birth reaching maximal levels at adulthood. An immunohistochemical study showed that GR was strongly bound to the bronchial epithelia in lungs and the epithelial cells of renal tubes. GPX1 was expressed in the renal tube epithelial cells and its level gradually increased after birth in a manner similar to that of GR. The expression of GPX1 in the lungs was, on the other hand, variable and occurred in some alveolar cells and bronchial epithelia only at restricted periods. It preferentially localized in nuclei at a late stage of development. Thus, the expression of the two functionally coupled enzymes via GSH did not appear to coordinate with development, tissue localization or under oxidative stress. Since many gene products show GSH-dependent preoxidase activity, other peroxidase(s) may be induced to compensate for the low GPX1 levels at stages with high GR expression.  相似文献   

2.
To determine the in vivo role of cellular glutathione peroxidase (E.C.1.11.1.9, GPX1), we challenged the GPX1 knockout [GPX1(-/-)], the GPX1 overexpressing [GPX1(+)], and their respective wild-type (WT) mice of different Se and vitamin E status with acute oxidative stress. After these mice were injected with pro-oxidants paraquat or diquat at 12 to 125 mg/kg of body weight, their survival rate and time were a function of their GPX1 activity levels. The GPX1 protection was associated with attenuation of NADPH and NADH oxidation, protein carbonyl and F(2)-isoprostanes formation, and alanine transaminase release in various tissues, and was irreplaceable by high levels of dietary vitamin E or other selenoproteins. The GPX1 expression was also protective against moderate oxidative stress induced by low levels of paraquat or diquat, particularly in the Se-deficient mice. Alteration of GPX1 expression showed no impact on the expression of other selenoproteins and antioxidant enzymes in unstressed mice. Total Se content in liver of the Se-adequate GPX1(-/-) mice was reduced by 60% the WT controls. In conclusion, normal expression of GPX1 is essential and overexpression of GPX1 is beneficial to protect mice against acute oxidative stress.  相似文献   

3.
Glutathione, which is found in high levels in eye tissues, is involved in multiple functions, including serving as an antioxidant and as an electron donor for peroxidases. Although the activities of enzymes related to glutathione metabolism have been reported in the eye, the issue of which cells produce these proteins, where they are produced and at what levels is an important one. Glutathione reductase, an enzyme which recycles oxidized glutathione by transferring electrons from NADPH, was localized immunohistochemically in adult rat eye in this study. The reductase was distributed in the corneal and conjunctival epithelia, corneal keratocytes and endothelium, iridial and ciliary epithelia, neural retina, and retinal pigment epithelium. In addition, it was highly expressed in ganglion cells, which are responsible for transmitting photophysiological signals from the retina to the higher visual centres. To clarify the correlation of glutathione reductase expression and oxidative stress, the enzymatic activity and the level of protein expression at the pre- and postnatal stages was examined. Expression of the enzyme was detected first in the ganglion cell layer of a late prenatal stage, and appeared in the inner plexyform layer after birth. Along with an increasing differentiation between the inner nuclear and outer nuclear layers, glutathione reductase expression became detectable in the outer plexyform layer. Pigment epithelial cells were positively stained only after birth. Expression was also detected in the lens epithelium from the prenatal to early postnatal stages although its level was low in the adult lens. Collectively, these data, except for lens epithelia, suggest the pivotal role of glutathione reductase in recycling oxidized glutathione for the protection of the tissues against oxidative stress, which is caused by eye opening accompanied by the initiation of various ocular processes, such as accession of light and transduction of the photochemical signal.  相似文献   

4.
This study investigated the direct roles of hydrogen peroxide (H2O2) in kidney aging using transgenic mice overexpressing glutathione peroxidase‐1 (GPX1 TG). We demonstrated that kidneys in old mice recapitulated kidneys in elderly humans and were characterized by glomerulosclerosis, tubular atrophy, interstitial fibrosis, and loss of cortical mass. Scavenging H2O2 by GPX1 TG significantly reduced mitochondrial and total cellular reactive oxygen species (ROS) and mitigated oxidative damage, thus improving these pathologies. The potential mechanisms by which ROS are increased in the aged kidney include a decreased abundance of an anti‐aging hormone, Klotho, in kidney tissue, and decreased expression of nuclear respiratory factor 2 (Nrf2), a master regulator of the stress response. Decreased Klotho or Nrf2 was not improved in the kidneys of old GPX1 TG mice, even though mitochondrial morphology was better preserved. Using laser capture microdissection followed by label‐free shotgun proteomics analysis, we show that the glomerular proteome in old mice was characterized by decreased abundance of cytoskeletal proteins (critical for maintaining normal glomerular function) and heat shock proteins, leading to increased accumulation of apolipoprotein E and inflammatory molecules. Targeted proteomic analysis of kidney tubules from old mice showed decreased abundance of fatty acid oxidation enzymes and antioxidant proteins, as well as increased abundance of glycolytic enzymes and molecular chaperones. GPX1 TG partially attenuated the remodeling of glomerular and tubule proteomes in aged kidneys. In summary, mitochondria from GPX1 TG mice are protected and kidney aging is ameliorated via its antioxidant activities, independent and downstream of Nrf2 or Klotho signaling.  相似文献   

5.
谷胱甘肽过氧化物酶(glutathione peroxidase, GPX)是动植物体内一种重要的抗氧化酶,它能够清除机体逆境胁迫而产生的过氧化氢和脂质过氧化物,使机体进行正常生长发育,因此解析丹参GPX的氨基酸序列,并与其它植物进行比较,为丹参GPX基因的后续研究提供重要参考。采用生物信息学的方法,在丹参基因组库中找到8个GPX基因,并对其进行生物信息学分析。8个GPX基因有不同的等电点和相对分子量,而二级结构存在相似特征;序列比对与系统发生分析表明,8个基因都具有3个保守结构域以及3个保守的催化残基;除Sm GPX4、At GPX4和Zm GPX02,Sm GPX8与At GPX8处于系统进化树的同一分支外,其它基因与玉米和拟南芥GPX基因的亲缘关系较远;Sm GPX1-2、Sm GPX6-1、Sm GPX6-2、Sm GPX8主要在叶片中表达,而Sm GPX1-1主要在花中表达,具有组织特异性。本研究为进一步了解丹参谷胱甘肽过氧化物酶的基本功能奠定了基础,为开展植物抵御氧化胁迫研究提供了理论依据。  相似文献   

6.
研究了浓度为0、1、5、10、15、20 mg/L的新兴离子液体溴化1-己基-3-甲基咪唑([C6mim]Br)在24h、48h、72h和96h对斜生栅藻还原型谷胱甘肽(GSH)及其代谢酶-谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)和谷胱甘肽还原酶(GR)的影响。结果表明:GSH含量在24h、48h和72h时,在最低处理浓度下不变,其他处理浓度下随胁迫浓度增加而降低,96h时则与对照无差异或较小;GPX和GST的活性在72h之前明显升高(最高浓度组的GST活性有波动),96h时均降低至对照水平;GR活性在24h时,[C6mim]Br=1 mg/L时升高,之后降低,在48h增高至对照水平,72h时,[C6mim]Br≥10 mg/L的处理组高于对照水平,96h时,除最低处理组外,均降至对照水平以下。GR是GSH系统中的限速酶,GST则是该系统中活性和灵敏性最高的酶,可作为[C6mim]Br胁迫时的敏感的生物标志物。1 mg/L的[C6mim]Br可引起藻细胞的氧化胁迫,具有环境毒性。  相似文献   

7.
植物谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)是清除体内活性氧的一种关键酶,在植物抗逆反应中发挥重要作用.本研究从水稻中克隆到2个GPX基因,分别为OsGPX3和OsGPX4.OsGPX3和OsGPX4分别编码238和234个氨基酸组成的蛋白质,预测分子量分别是25.84 kD和25.07 kD.两个基因都包含5个内含子,但是两个基因所对应的内含子长度具有较大变异.组织表达谱分析发现这2个基因在根、茎、叶和叶鞘中均表达,是组成型表达基因.在大肠杆菌中表达并纯化了这2个基因的重组蛋白,酶活性分析显示OsGPX3和OsGPX4蛋白对底物H2O2、tBOOH和COOH具有较高活性,但是OsGPX3对3种底物的活性均高于OsGPX4,蛋白质酶活性的差异预示着这2个基因可能存在功能上的分化.  相似文献   

8.
Summary Reduced glutathione (GSH) levels and glutathione reductase (GR) and glutathione S-transferase (GST) activities were investigated in the erythrocytes and lymphocytes of non-dialyzed patients with varying degrees of chronic renal insufficiency, and also of patients on regular hemodialysis treatment. GSH, GR and GST levels were higher in erythrocytes and lymphocytes of examined patients as compared to their corresponding age-matched healthy controls. A correlation was found between the degree of renal insufficiency and the above parameters tested. A routine hemodialysis did not significantly affect erythrocyte and lymphocyte GSH content and activities of its associated enzymes. The increased GSH levels as well as GSH-linked enzyme activities of blood cells in uremia may be a protective mechanism for the cells due to the accumulation of toxic, oxidizing, wastes in the blood as a result of the uremic state. This view is supported by the results ofin vitro experiments, which have shown that GR and GST activities of normal human lymphocytes are increased when incubated with plasma from uremic patients.  相似文献   

9.
Glutathione reductase (GR) is an essential enzyme for the glutathione-mediated detoxification of peroxides because it catalyzes the reduction of glutathione disulfide. GR was purified from bovine brain 5,000-fold with a specific activity of 145 U/mg of protein. The homogeneity of the enzyme was proven by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the gel. The purified GR from bovine brain is a dimer of two subunits that have an apparent molecular mass of 55 kDa. The purified GR was used to generate a rabbit antiserum with the intention to localize GR in brain cells. The antiserum was useful for the detection of GR by double-labeling immunocytochemical staining in astroglia-rich and neuron-rich primary cultures from rat brain. In homogenates of these cultures, no significant difference in the specific activities of GR was determined. However, not all cell types present in these cultures showed identical staining intensity for GR. In astroglia-rich primary cultures, strong GR immunoreactivity was found in cells positive for the cellular markers galactocerebroside and C3b (antibody Ox42), indicating that oligodendroglial and microglial cells, respectively, contain GR. In contrast, only weak immunoreactivity for GR was found in cells positive for glial fibrillary acidic protein. In neuron-rich primary cultures, GAP43-positive cells stained with the antiserum against GR. These data demonstrate that, in cultures of neural cells, neurons, oligodendroglial cells, and microglial cells express high levels of GR.  相似文献   

10.
11.
The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H2O2), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.  相似文献   

12.
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.  相似文献   

13.
14.
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells.  相似文献   

15.
The toxicity of the antineoplastic agent doxorubicin (DOX) has been shown to be moderated by the antioxidant enzyme glutathione peroxidase. It has been reported that acute doses of DOX can cause an inhibition of glutathione peroxidase in cardiac tissue, that may render this tissue especially susceptible to further prooxidant damage. In this study, multiple DOX treatments at a therapeutic dose were assessed for their effect on the antioxidant enzyme status of cardiac and kidney tissue. DOX was administered i.p. (5 mg/kg) once a week for two weeks to male balb/c mice. The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX) and glutathione reductase (GR) were measured 1, 2 and 7 days following the second DOX treatment in both heart and kidney. Levels of reduced glutathione (GSH) were also measured in cardiac tissue at these same times. Cardiac levels of GPOX and GR showed a time-dependent decrease in activity, with 10% and 12% inhibition for GPOX and GR, respectively, at 7 days post second treatment. Cardiac levels of GSH also showed a significant decrease, approximately 15%, at 7 days post second treatment. Cardiac levels of SOD and CAT as well as kidney levels of all four antioxidant enzymes were not affected by DOX treatment. These data suggest that DOX given in a therapeutic regimen, at a therapeutic dose, can cause decreases in cardiac levels of GPOX, GR and GSH that could render the heart especially susceptible to further oxidative challenge.  相似文献   

16.
Selenium (Se)-containing proteins have important roles in protecting cells from oxidative damage. This work investigated the effects of Se-depletion on the expression of the genes encoding selenoproteins in colonic mucosa from rats fed diets of different Se content and in human intestinal Caco-2 cells grown in Se-adequate or Se-depleted culture medium. Se-depletion produced statistically significant (P<0.05) falls in glutathione peroxidase (GPX) 1 mRNA (60-83%) and selenoprotein W mRNA (73%) levels, a small but significant fall in GPX4 mRNA (17-25%) but no significant change in GPX2. The data show that SelW expression in the colon is highly sensitive to Se-depletion.  相似文献   

17.
The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.  相似文献   

18.
Superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS, as not one of them can singlehandedly clear all forms of ROS. In order to imitate the synergy of the enzymes, we designed and generated a recombinant protein, which comprises of a Schistosoma japonicum GST (SjGST) and a bifunctional 35-mer peptide with SOD and GPX activities. The engineered protein demonstrated SOD, GPX and GST activities simultaneously. This trifunctional enzyme with SOD, GPX and GST activities is expected to be the best ROS scavenger.  相似文献   

19.
The protective effects of resveratrol and 4-hexylresorcinol against oxidative DNA damage in human lymphocytes induced by hydrogen peroxide were investigated. Resveratrol and 4-hexylresorcinol showed no cytotoxicity to human lymphocytes at the tested concentration (10-100 μM). In addition, DNA damage in human lymphocytes induced by H 2 O 2 was inhibited by resveratrol and 4-hexylresorcinol. Resveratrol and 4-hexylresorcinol at concentrations of 10-100 μM induced an increase in glutathione (GSH) levels in a concentration-dependent manner. Moreover, these two compounds also induced activity of glutathione peroxidase (GPX) and glutathione reductase (GR). The activity of glutathione-S-transferase (GST) in human lymphocytes was induced by resveratrol. Resveratrol and 4-hexylresorcinol inhibited the activity of catalase (CAT). These data indicate that the inhibition of resveratrol and 4-hexylresorcinol on oxidative DNA damage in human lymphocytes induced by H 2 O 2 might be attributed to increase levels of GSH and modulation of antioxidant enzymes (GPX, GR and GST).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号