共查询到20条相似文献,搜索用时 15 毫秒
1.
Qing Feng Takeshi Kumagai Yasuyoshi Torii Yoshimasa Nakamura Toshihiko Osawa Koji Uchida 《Free radical research》2001,35(6):779-788
Oxidative stress has been implicated in the pathogenesis of numerous diseases, including cancer. In the present study, the protective effect of natural antioxidants, such as quercetin and tea polyphenols, on intracellular oxidative stress was studied. Here we report a novel function of quercetin and tea polyphenols, as potential inhibitors of 4-hydroxy-2-nonenal (HNE)-induced intracellular oxidative stress and cytotoxicity. In rat liver epithelial RL34 cells, a potent electrophile HNE dramatically induced the productions of reactive oxygen species (ROS), which correlated well with the reduction in cell viability. We found that quercetin and tea polyphenols, such as epigallocatechin gallate and theaflavins and their gallate esters, significantly inhibited the HNE-induced ROS production and cytotoxicity. In addition, HNE induced a transient decrease in the mitochondrial membrane potential (Δψ), which was also retarded by the antioxidants. These data suggest that the antioxidants, such as quercetin and tea polyphenols, are inhibitors against mitochondrial ROS production. 相似文献
2.
Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells 总被引:3,自引:0,他引:3
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) plays a major role in acetaldehyde detoxification. The alcohol sensitivity is associated with a genetic deficiency of ALDH2. We have previously reported that this deficiency influences the risk for late-onset Alzheimer's disease. However, the biological effects of the deficiency on neuronal cells are poorly understood. Thus, we obtained ALDH2-deficient cell lines by introducing mouse mutant Aldh2 cDNA into PC12 cells. The mutant ALDH2 repressed mitochondrial ALDH activity in a dominant negative fashion, but not cytosolic activity. The resultant ALDH2-deficient transfectants were highly vulnerable to exogenous 4-hydroxy-2-nonenal, an aldehyde derivative generated by the reaction of superoxide with unsaturated fatty acid. In addition, the ALDH2-deficient transfectants were sensitive to oxidative insult induced by antimycin A, accompanied by an accumulation of proteins modified with 4-hydroxy-2-nonenal. Thus, these findings suggest that mitochondrial ALDH2 functions as a protector against oxidative stress. 相似文献
3.
Sowell J Conway HM Bruno RS Traber MG Frei B Stevens JF 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2005,827(1):139-145
Oxidative stress, resulting from the generation of reactive oxygen species, contributes to the development of a multitude of age-related diseases. Current methods of assessing oxidative stress levels range from the detection of lipid peroxidation products, such as F(2)-isoprostanes and malondialdehyde, to monitoring the redox status of glutathione. While useful, traditional biomarkers of oxidative stress are not without their drawbacks, including low in vitro concentrations and possible artifact formation. In the present study, we utilize liquid chromatography coupled with tandem mass spectrometry for investigation into the use of a novel compound, ascorbylated 4-hydroxy-2-nonenal, as a potential biomarker of oxidative stress. 相似文献
4.
The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H(2)O(2)-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H(2)O(2) cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H(2)O(2) cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways. 相似文献
5.
《Journal of trace elements in medicine and biology》2014,28(2):233-239
This study aimed to evaluate the protective efficacy of some antioxidants against sodium tungstate induced oxidative stress in male wistar rats. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) for three months except for control group. In the same time, many rats were supplemented orally with different antioxidants (alpha-lipoic acid (ALA), n-acetylcysteine (NAC), quercetin or naringenin (0.30 mM)) for five consecutive days a week for the same mentioned period before. Exposure to sodium tungstate significantly (P < 0.05) inhibit blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver and blood reduced glutathione (GSH) levels and an increase in oxidized glutathione (GSSG) and thiobarbituric acid reactive species (TBARS) levels in tissues. ALA acid and NAC supplementation post sodium tungstate exposure increased GSH and also, was beneficial in the recovery of altered superoxide dismutase and catalase activity, besides, significantly reducing blood and tissue reactive oxygen species and TBARS levels. The results suggest a more pronounced efficacy of ALA acid and NAC supplementation than quercetin or naringenin supplementation post sodium tungstate exposure in preventing induced oxidative stress in rats. 相似文献
6.
Liang H Van Remmen H Frohlich V Lechleiter J Richardson A Ran Q 《Biochemical and biophysical research communications》2007,356(4):893-898
Mitochondrial ATP production can be impaired by oxidative stress. Glutathione peroxidase 4 (Gpx4) is an antioxidant defense enzyme found in mitochondria as well as other subcellular organelles that directly detoxifies membrane lipid hydroperoxides. To determine if Gpx4 protects ATP production in vivo, we compared mitochondrial ATP production between wild-type mice and Gpx4 transgenic mice using a diquat model. Diquat (50 mg/kg) significantly decreased mitochondrial ATP synthesis in livers of wild-type mice; however, no decrease in mitochondrial ATP synthesis was detected in Gpx4 transgenic mice after diquat. We observed no differences in activities of mitochondrial respiratory chain complexes between Gpx4 transgenic mice and wild-type mice. However, compared to wild-type mice, diquat-induced loss of mitochondrial membrane potential was attenuated in Gpx4 transgenic mice. Therefore, our results indicate that decreased ATP production under oxidative stress is primarily due to reduced mitochondrial membrane potential and overexpression of Gpx4 maintains mitochondrial membrane potential under oxidative stress. 相似文献
7.
This is the newest report in a series of publications aiming to identify a blood-based antioxidant biomarker that could serve as an in vivo indicator of oxidative stress. The goal of the study was to test whether acutely exposing Göttingen mini pigs to the endotoxin lipopolysaccharide (LPS) results in a loss of antioxidants from plasma. We set as a criterion that a significant effect should be measured in plasma and seen at both doses and at more than one time point. Animals were injected with two doses of LPS at 2.5 and 5 µg/kg iv. Control plasma was collected from each animal before the LPS injection. After the LPS injection, plasma samples were collected at 2, 16, 48, and 72 h. Compared with the controls at the same time point, statistically significant losses were not found for either dose at multiple time points in any of the following potential markers: ascorbic acid, tocopherols (α, δ, γ), ratios of GSH/GSSG and cysteine/cystine, mixed disulfides, and total antioxidant capacity. However, uric acid, total GSH, and total Cys were significantly increased, probably because LPS had a harmful effect on the liver. The leakage of substances from damaged cells into the plasma may have increased plasma antioxidant concentrations, making changes difficult to interpret. Although this study used a mini-pig animal model of LPS-induced oxidative stress, it confirmed our previous findings in different rat models that measurement of antioxidants in plasma is not useful for the assessment of oxidative damage in vivo. 相似文献
8.
为探讨低温对机体能量代谢、器官/组织抗氧化能力和过氧化自由基水平的影响及其内在联系,本研究测定了不同时间低温和梯度低温处理的黑线仓鼠的摄食量、体重、主要内脏器官/组织的过氧化物歧化酶(SOD)、过氧化氢酶(CAT)、H2O2和丙二醛(MDA)水平。低温使摄食量显著增加,但未影响体重。低温暴露42 d使心脏和骨骼肌MDA水平、骨骼肌SOD活性显著升高;梯度低温使脑和肾脏H2O2水平、肝脏和骨骼肌SOD活性显著降低,使脑、肝脏、肺、肾脏MDA水平、脑和小肠SOD活性显著升高。抗氧化能力和过氧化自由基水平在不同器官之间相关性存在差异,同一器官内二者的相关性在肾脏为100%,肝脏66.7%,骨骼肌50.0%。结果表明:(1)过氧化自由基的产生与低温暴露的时间和程度有关;(2)不同器官/组织过氧化自由基水平不同;(3)部分器官/组织抗氧化酶活性的变化与过氧化自由基水平的变化密切相关,可能是防止过氧化损伤的主要防御系统。 相似文献
9.
Ryan EP Bushnell TP Friedman AE Rahman I Phipps RP 《Cancer immunology, immunotherapy : CII》2008,57(3):347-358
We recently reported that inhibition of Cyclooxygenase-2 (Cox-2) reduced human B-CLL proliferation and survival. Herein, we
investigated the mechanisms whereby small molecule Cox-2 selective inhibitors, SC-58125 (a Celebrex analog) and CAY10404 blunt
survival of human B-cell lymphomas and chronic lymphocytic leukemia B-cells. SC-58125 and OSU03012 (a Celebrex analog that
lacks Cox-2 inhibitory activity) both decreased intracellular glutathione (GSH) content in malignant human B-cells, as well
as in Cox-2 deficient mouse B-cells. This new finding supports Cox-2 independent effects of SC-58125. Interestingly, SC-58125
also significantly increased B-cell reactive oxygen species (ROS) production, suggesting that ROS are a pathway that reduces
malignant cell survival. Addition of GSH ethyl ester protected B lymphomas from the increased mitochondrial membrane permeability
and reduced survival induced by SC-58125. Moreover, the SC-58125-mediated GSH depletion resulted in elevated steady-state
levels of the glutamate cysteine ligase catalytic subunit mRNA and protein. These new findings of increased ROS and diminished
GSH levels following SC-58125 exposure support novel mechanisms whereby a Cox-2 selective inhibitor reduces malignant B-cell
survival. These observations also support the concept that certain Cox-2 selective inhibitors may have therapeutic value in
combination with other drugs to kill malignant B lineage cells. 相似文献
10.
《Free radical research》2013,47(7):814-822
AbstractMammalian odorant-binding proteins (OBPs) are soluble lipocalins produced in the nasal mucosa and in other epithelial tissues of several animal species, where they are supposed to serve as scavengers for small structurally unrelated hydrophobic molecules. These would include odorants and toxic aldehydes like 4-hydroxy-2-nonenal (HNE), which are end products of lipid peroxidation; therefore OBP might physiologically contribute to preserve the integrity of epithelial tissues under oxidative stress conditions by removing toxic compounds from the environment and, eventually, driving them to the appropriate degradative pathways. With the aim of developing a biological model based on a living organism for the investigation of the antioxidant properties of OBP, here we asked whether the overexpression of the protein could confer protection from chemical-induced oxidative stress in Escherichia coli. To this aim, bacteria were made to overexpress either GCC-bOBP, a redesigned monomeric mutant of bovine OBP, or its amino-terminal 6-histidine-tagged version 6H-GCC-bOBP. After inducing overexpression for 4 h, bacterial cells were diluted in fresh culture media, and their growth curves were followed in the presence of hydrogen peroxide (H2O2) and tert-Butyl hydroperoxide (tBuOOH), two reactive oxygen species whose toxicity is mainly due to lipid peroxidation, and menadione, a redox-cycling drug producing the superoxide ion. GCC-bOBP and 6H-GCC-bOBP were found to protect bacterial cells from the insulting agents H2O2 and tBuOOH but not from menadione. The obtained data led us to hypothesize that the presence of overexpressed OBP may contribute to protect bacterial cells against oxidative stress probably by sequestering toxic compounds locally produced during the first replication cycles by lipid peroxidation, before bacteria activate their appropriate enzyme-based antioxidative mechanisms. 相似文献
11.
Mitochondria,oxidative stress and cell death 总被引:4,自引:0,他引:4
Ott M Gogvadze V Orrenius S Zhivotovsky B 《Apoptosis : an international journal on programmed cell death》2007,12(5):913-922
In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged
as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular
source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive
ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death.
Mitochondria-generated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin,
which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of “free” cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating
evidence supporting a direct link between mitochondria, oxidative stress and cell death. 相似文献
12.
13.
We have previously derived 2 V79 clones resistant to menadione (Md1 cells) and cadmium (Cd1 cells), respectively. They both were shown to be cross-resistant to hydrogen peroxide. There was a modification in the antioxidant repertoire in these cells as compared to the parental cells. Md1 presented an increase in catalase and glutathione peroxidase activities whereas Cd1 cells exhibited an increase in metallothionein and glutathione contents. The susceptibility of the DNA of these cells to the damaging effect of H2O2 was tested using the DNA precipitation assay. Both Md1 and Cd1 DNAs were more resistant to the peroxide action. In the case of Md1 cells it seems clear that the extra resistance is provided by the increase in the two H2O2 scavenger enzymes, catalase and glutathione peroxidase. In the case of Cd1 cells the activities of these enzymes as well as of superoxide dismutases (Cu/Zn and Mn) are unaltered as compared to the parental cells. The facts that parental cells exposed to 100 μM Zn2+ in the medium exhibit an increase in metallothionein but not in glutathione and that these cells become more resistant to the DNA-damaging effect of H2O2 suggest that this protein might play a protective role in vivo against the OH radical attack on DNA. 相似文献
14.
Intidhar Ben Salem Manel Boussabbeh Imen Graiet Asma Rhouma Hassen Bacha Salwa Abid Essefi 《Cell stress & chaperones》2016,21(1):179-186
The present study was designed to assess the possible protective effects of Quercetin (QUER), a flavonoid with well-known pharmacological effects, against Dichlorvos (DDVP)-induced toxicity in vitro using HCT116 cells. The cytotoxicity was monitored by cell viability, reactive oxygen species (ROS) generation, anti-oxidant enzyme activities, malondialdehyde (MDA) production, and DNA fragmentation. The apoptosis was assessed through the measurement of the mitochondrial transmembrane potential (ΔΨm) and caspase activation. The results indicated that pretreatment of HCT116 cells with QUER, 2 h prior to DDVP exposure, significantly decreased the DDVP-induced cell death, inhibited the ROS generation, modulated the activities of catalase (CAT) and superoxide dismutase (SOD), and reduced the MDA level. The reductions in mitochondrial membrane potential, DNA fragmentation, and caspase activation were also attenuated by QUER. These findings suggest that dietary QUER can protect HCT116 cells against DDVP-induced oxidative stress and apoptosis. 相似文献
15.
Shin EJ Jeong JH Chung YH Kim WK Ko KH Bach JH Hong JS Yoneda Y Kim HC 《Neurochemistry international》2011,59(2):122-137
Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetic rat models, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment. 相似文献
16.
Glucose effects on the vegetative growth of Dictyostelium discoideum Ax2 were studied by examining oxidative stress and tetrahydropteridine synthesis in cells cultured with different concentrations (0.5X, 7.7 g L-1; 1X, 15.4 g L-1; 2X, 30.8 g L-1) of glucose. The growth rate was optimal in 1X cells (cells grown in 1X glucose) but was impaired drastically in 2X cells, below the level of 0.5X cells. There were glucose-dependent increases in reactive oxygen species (ROS) levels and mitochondrial dysfunction in parallel with the mRNA copy numbers of the enzymes catalyzing tetrahydropteridine synthesis and regeneration. On the other hand, both the specific activities of the enzymes and tetrahydropteridine levels in 2X cells were lower than those in 1X cells, but were higher than those in 0.5X cells. Given the antioxidant function of tetrahydropteridines and both the beneficial and harmful effects of ROS, the results suggest glucose-induced oxidative stress in Dictyostelium, a process that might originate from aerobic glycolysis, as well as a protective role of tetrahydropteridines against this stress. [BMB Reports 2013; 46(2): 86-91] 相似文献
17.
Bojiang Li Qiannan Weng Zequn Liu Ming Shen Jiaqing Zhang Wangjun Wu Honglin Liu 《Journal of biochemical and molecular toxicology》2017,31(12)
Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro‐apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary. 相似文献
18.
Klöppel C Michels C Zimmer J Herrmann JM Riemer J 《Biochemical and biophysical research communications》2010,403(1):114-3767
The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1G93A becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1G85R. Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. 相似文献
19.
Antioxidant, anti-inflammatory and anti-atherogenic effects have been associated with elevations of unconjugated bilirubin (UCB) in serum and with the induction of heme oxygenase-1 (HO-1), the rate-limiting enzyme in UCB synthesis. The aim of this study was to investigate the intracellular metabolism and antioxidant properties of UCB in human hepatoblastoma HepG2 cells and tissues of Wistar rats exposed to oxidative stressors and lipopolysaccharide (LPS), respectively. Intracellular UCB concentrations in HepG2 cells correlated with its levels in culture media (p < 0.001) and diminished lipid peroxidation in a dose-dependent manner (p < 0.001). Moreover, induction of HO-1 with sodium arsenite led to 2.4-fold (p = 0.01) accumulation of intracellular UCB over basal level while sodium azide-derived oxidative stress resulted in a 60% drop (p < 0.001). This decrease was ameliorated by UCB elevation in media or by simultaneous induction of HO-1. In addition, hyperbilirubinemia and liver HO-1 induction in LPS-treated rats resulted in a 2-fold accumulation of tissue UCB (p = 0.01) associated with enhanced protection against lipid peroxidation (p = 0.02). In conclusion, hyperbilirubinemia and HO-1 induction associated with inflammation and oxidative stress increase intracellular concentrations of UCB, thus enhancing the protection of cellular lipids against peroxidation. Therefore, the previously reported protective effects of hyperbilirubinemia and HO-1 induction are at least in part due to intracellular accumulation of UCB. 相似文献
20.
Markus Schwarzländer 《BBA》2009,1787(5):468-475
In animals, the impact of ROS production by mitochondria on cell physiology, death, disease and ageing is well recognised. In photosynthetic organisms such as higher plants, however, the chloroplast and peroxisomes are the major sources of ROS during normal metabolism and the importance of mitochondria in oxidative stress and redox signalling is less well established. To address this, the in vivo oxidation state of a mitochondrially-targeted redox-sensitive GFP (mt-roGFP2) was investigated in Arabidopsis leaves. Classical ROS-generating inhibitors of mitochondrial electron transport (rotenone, antimycin A and SHAM) had no effect on mt-roGFP oxidation when used singly, but combined inhibition of complex III and alternative oxidase by antimycin A and SHAM did cause significant oxidation. Inhibitors of complex IV and aconitase also caused oxidation of mt-roGFP2. This oxidation was not apparent in the cytosol whereas antimycin A + SHAM also caused oxidation of cytosolic roGFP2. Menadione had a much greater effect than the inhibitors, causing nearly complete oxidation of roGFP2 in both mitochondria and cytosol. A range of severe abiotic stress treatments (heat, salt, and heavy metal stress) led to oxidation of mt-roGFP2 while hyperosmotic stress had no effect and low temperature caused a slight but significant decrease in oxidation. Similar changes were observed for cytosolic roGFP2. Finally, the recovery of oxidation state of roGFP in mitochondria after oxidation by H2O2 treatment was dramatically slower than that of either the cytosol or chloroplast. Together, the results highlight the sensitivity of the mitochondrion to redox perturbation and suggest a potential role in sensing and signalling cellular redox challenge. 相似文献