首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo ESR spectroscopy using a low frequency microwave of approximately 1 GHz has been developed to measure non-invasive ESR spectra in animals given paramagnetic compounds, in which a loop-gap-type resonator was used and ESR spectra were measured at the animal's head or abdomen. Therefore, the concentrations of paramagnetic species in both the blood and organs were compositely contributed to the spectra. When we understand the kinetics of paramagnetic species in detail, it is essentially important to know how these kinetics are expressed in each organ. For this purpose, a surface-coil-type resonator, which enabled local ESR measurement in specific organs, has been developed. By using this method, we studied the real-time pharmacokinetics of spin clearance curves detected in the organs of mice given 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) intravenously (i.v.), by monitoring the inferior vena cava, liver and kidney. Quantified clearance curves in the organs were analyzed on the basis of a two-compartment model, and pharmacokinetic parameters were estimated based on the curve-fitting. The obtained pharmacokinetic parameters were found to depend on the measurement site, and the distribution and elimination processes of the spin probe were successfully separated between the blood and organs of mice.  相似文献   

2.
Free radical species in animals have been measured by X-band ESR spectrometric method on a block of organs or a portion of homogenized samples. However, a nondestructive in vivo ESR measurement has been realized by using a recently developed L-band ESR spectrometry. With this L-band ESR method, we measured ESR spectra in animals, who received stable nitroxide radicals. L-band ESR spectra were observed at the upper abdomen of mice as well as at the heads of mice and rats at various ages immediately after the intravenous injections of nitroxide radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) and 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (3-carbamoyl-PROXYL), in which ESR measurements of the radicals were performed noninvasively at the real time. On the basis of the observed time-dependent free radical clearance curves, the following important results were obtained: (1) Free radical clearances were able to analyze by the pharmacokinetic method. (2) The radicals at the head of mice, given 4-hydroxy-TEMPO, were determined quantitatively by a new analytical method using L-band ESR for the first time. (3) The elimination of the radical was found to be saturated in mice. (4) The clearance rate constant of 4-hydroxy-TEMPO detected at the head of mice was decreased in dose- and age-dependent manners. While, no age-dependent clearance rate constant of 4-hydroxy-TEMPO was observed at the upper abdomen of mice. (5) Ratios of the amount of the detected radicals to that of the administered radicals were decreased age-dependently, but they were independent of the dose of the radicals, suggesting the age-dependent decrease of distribution capacity ratio of the radical at the head of animals. (6) Clearance rate constants of 4-hydroxy-TEMPO and 3-carbamoyl-PROXYL, that were estimated by X- and L-band ESR for the collected blood of mice and rats, were found to be remarkably smaller than those in whole living animals observed by in vivo L-band ESR method. The results suggest that the clearance of the nitroxide radical is relevant to the alteration of the radical in animals following the change of organ distribution and metabolism. (7) Both the radical and its corresponding hydroxylamine, which is the reduced form of the radical, were detectable by X-band ESR method in the collected urine of mice and rats without and with an oxidizing agent, respectively.

On the basis of the results on L-band ESR spectrometry, the first quantitative pharmacokinetic analysis of stable spin probes in animals is proposed.  相似文献   

3.
Among vanadium's wide variety of biological functions, its insulin-mimetic effect is the most interesting and important. Recently, the vanadyl ion (+4 oxidation state of vanadium) and its complexes have been shown to normalize the blood glucose levels of streptozotocin-induced diabetic rats (STZ-rats). During our investigations to find more effective and less toxic vanadyl complexes, the vanadyl-methylpicolinate complex (VO-MPA) was found to exhibit higher insulin-mimetic activity and less toxicity than other complexes, as evaluated by both in vitro and in vivo experiments. Electron spin resonance (ESR) is capable of measuring the paramagnetic species in biological samples. We have developed the in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) method to analyze the ESR signals due to stable organic radicals in real time. In the present investigation, we have applied this method to elucidate the relationship between the blood glucose normalizing effect of VO-MPA and the global disposition of paramagnetic vanadyl species. This paper describes the results of vanadyl species in the circulating blood of rats following intravenous administration of vanadyl compounds. ESR spectra due to the presence of vanadyl species were obtained in the circulating blood, and their pharmacokinetic parameters were estimated using compartment models. The results indicate that vanadyl species are distributed considerably to the peripheral tissues, as estimated by BCM-ESR, and eliminated from the body through the urine, as estimated by ESR at 77 K. The exposure of vanadyl species in the blood was found to be enhanced by VO-MPA treatment. Given these results, we concluded that the pharmacokinetic character of vanadyl species is closely related with the structure and antidiabetic activity of the vanadyl compounds.  相似文献   

4.
It has been shown that bio-trace metal elements are related to many diseases and the aging process. For many years, carcinogen hexavalent chromium (VI) has been known to be toxic to animals, but its dynamic toxicological mechanism is not sufficiently elucidated. Bioinorganic chemistry in terms of metallokinetic analysis of beneficial or toxic metal ions and their complexes is an important investigation for understanding their biochemical and physiological roles. We have tried to examine the real-time behavior of paramagnetic metal ions and complexes in animals, in which electron spin resonance (ESR) was capable of measuring paramagnetic species in chemical and biological systems. On the basis of our previous results on stable nitroxide spin probes, we have developed the in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) method to analyze time-dependent ESR signal changes due to paramagnetic metal ions and their complexes in real time. When K2Cr2O7 or Na2Cr2O7 in saline was intravenously administered to rats, two ESR signals due to pentavalent chromium(V) were detectable in the circulating blood of rats. Cr(V) detected in the blood was indicated to be in the CrO(O4) and CrO(S2O2) coordination modes after the study on model complexes. From the changes of ESR signal intensities due to Cr(V) in the blood, the metallokinetic parameters were obtained using the pharmacokinetic analysis and the curve-fitting methods. The obtained results are important for understanding carcinogen chromate in terms of the formation of Cr(V) in animals. In addition, we propose the BCM-ESR method, which is useful to analyze the disposition of paramagnetic metal species in the blood of living animals.  相似文献   

5.
In pharmacokinetic studies, a variety of analytical method including radioisotopic detection and HPLC (high performance liquid chromatography) has been used. In the present investigation, we developed in vivo BCM (Blood Circulation Monitoring)-ESR method, which is a new technique with a conventional X-band ESR spectrometer for observing stable free radicals in the circulating blood of living rats under anaesthesia. Both 5-(PROXYL derivatives) and 6-(TEMPO derivatives) membered nitroxide spin probes with various types of substituent functional group were used. After physicochemical properties of the spin probes such as hyperfine coupling constant (A-value), g-value and partition coefficient as well as chemical stability of the compounds in the fresh blood were obtained, the in vivo BCM-ESR method was performed in normal rats. Several pharmacokinetic parameters such as half-life of the probes, distribution volume, total body clearance and mean residence time were obtained and discussed in terms of their chemical structures. In addition, clearance of a spin probe was related to the urine concentration. The BCM-ESR method was found to be very useful to observe free radicals at the real time. By time-dependent ESR signal decay of spin probes, pharmacokinetic parameters were obtained.  相似文献   

6.
《Free radical research》2013,47(6):483-496
In pharmacokinetic studies, a variety of analytical method including radioisotopic detection and HPLC (high performance liquid chromatography) has been used. In the present investigation, we developed in vivo BCM (Blood Circulation Monitoring)-ESR method, which is a new technique with a conventional X-band ESR spectrometer for observing stable free radicals in the circulating blood of living rats under anaesthesia. Both 5–(PROXYL derivatives) and 6–(TEMPO derivatives) membered nitroxide spin probes with various types of substituent functional group were used. After physicochemical properties of the spin probes such as hyperfine coupling constant (A-value), g-value and partition coefficient as well as chemical stability of the compounds in the fresh blood were obtained, the in vivo BCM-ESR method was performed in normal rats. Several pharmacokinetic parameters such as half-life of the probes, distribution volume, total body clearance and mean residence time were obtained and discussed in terms of their chemical structures. In addition, clearance of a spin probe was related to the urine concentration. The BCM-ESR method was found to be very useful to observe free radicals at the real time. By time-dependent ESR signal decay of spin probes, pharmacokinetic parameters were obtained.  相似文献   

7.
The insulinomimetic effect of vanadium is the most remarkable and important among its several biological actions. Vanadyl ion (+4 oxidation state of vanadium) and its complexes have been found to normalize the blood glucose levels of both type 1 and 2 diabetic animals. We have developed insulinomimetic vanadyl complexes having different coordination modes, emphasizing the possible usefulness of vanadyl-picolinate [VO(pa)(2)] and its related complexes with the VO(N(2)O(2)) coordination mode. In order to apply these complexes clinically in the future, the relationship between the chemical structure, insulinomimetic action, organ distribution of vanadium, and blood disposition of vanadyl species must be closely investigated. In the present investigation, we studied the blood disposition of the vanadyl-picolinate complexes in healthy rats, and tried to understand comprehensively the relationship between the structures, insulinomimetic activity, and metallokinetic parameters of the complexes, which had been recently prepared and specifically synthesized for the present study, by using an in vivo blood circulation monitoring -- electron spin resonance (BCM-ESR) method for analyzing ESR signals due to paramagnetic metal ions and complexes in the blood in real time. Metallokinetic parameters were estimated based on the blood clearance curves in terms of a two-compartment pharmacokinetic model, and vanadyl species were indicated to be distributed in peripheral tissues and gradually eliminated from the circulating blood, depending on their chemical structures. Vanadyl concentrations in the blood of rats given bis(5-iodopicolinato)oxovanadium(IV) [VO(5ipa)(2)] and bis(3-methylpicolinato)oxovanadium(IV) [VO(3mpa)(2)] with electron-withdrawing and donating groups, respectively, remained significantly higher and longer, due to their slower clearance rates from the blood, than in rats given other complexes, suggesting that the high exposure and long residence of vanadyl species bring about the high normoglyceric effect in diabetic animals. We then examined the relationship between insulinomimetic activity and metallokinetic parameters in the family of VO(pa)(2) for further development of insulinomimetic vanadyl complexes. IC(50), the 50% inhibitory concentration of the complexes on the free fatty acid release from isolated rat adipocytes treated with epinephrine, was found to be sufficiently correlated with metallokinetic parameters such as area under the concentration curve, mean residence time, total clearance, and distribution volume at steady-state. Furthermore, the in vivo antidiabetic activity of the complexes was enhanced with increasing exposure and residence of vanadyl species in the blood of animals. On the basis of these results, we concluded that in vitro insulinomimetic activity, metallokinetic character, and in vivo antidiabetic action of vanadyl-picolinate complexes are closely related to their chemical structures.  相似文献   

8.
Nitric oxide (NO) is well known to have a wide variety of biological and physiological functions in animals. On the basis of the fact that Fe(II)-dithiocarbamates react with NO, a Fe(II)-N-(dithiocarboxy)sarcosine complex (Fe(II)-DTCS) was proposed as a trapping agent for endogenous NO. However, quantitative pharmacokinetic investigation for NO-Fe(II)-dithiocarbamate complexes in experimental animals has been quite limited. This paper describes the results on the quantitative pharmacokinetic features of a NO-Fe(II)-N-DTCS in both the blood and bile of rats following intravenous (i.v.) administration of the complex. For this purpose, we applied two in vivo methods, i.e. (1) in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) which previously developed, and (2) in vivo biliary excretion monitoring-electron spin resonance (BEM-ESR). We monitored real-time ESR signals due to nitrosyl-iron species in the circulating blood and bile flow. The ESR signal due to NO-Fe(II)-DTCS was stable in biological systems such as the fresh blood and bile. In in vivo BCM- and BEM-ESR, the pharmacokinetic parameters were calculated on the basis of the two-compartment and hepatobiliary transport models. The studies also revealed that the compound is widely distributed in the peripheral organs and partially excreted into the bile. We named a kinetic method to follow spin concentrations as spinnokinetics and this method will be useful for detecting and quantifying the endogenously generated NO in Fe(II)-DTCS administered animals.  相似文献   

9.
I I Vlasova  S P Kuprin 《Biofizika》1992,37(5):910-919
A single SH-group of phosphoglycerate kinase from yeast was modified by mercury-containing spin label. The saturation curves of ESR spectra of the spin-labeled enzyme were studied. The paramagnetic ions of Mn2+ bound to the centre of ion nonspecific binding or active centre in the complex with ATP can influence the saturation of the spin-labeled enzyme. The saturation curves of the ESR signal of the spin-labeled enzyme in the presence of paramagnetic complex of CrATP were studied. It has been demonstrated that the second nonspecific centre of ATP binding is located at the active site of the enzyme (3-phosphoglycerate binding centre).  相似文献   

10.
Six transition metal ion complexes have been examined for their effects on the cell survival as well as their effectiveness in inducing the broadening of the electron spin resonance (ESR) spectra of nitroxide spin probes. These paramagnetic species are Ni(EDTA), Ni(DTPA), potassium tris(oxalato) chromate (chromium oxalate), K3Fe(CN)6, Cu(DTPA), and NiCl2. At 100 mM concentration, the typical concentration used in cell studies to broaden the extracellular nitroxide ESR signal, only Ni(EDTA) and Ni(DTPA) are found to be non-toxic to Chinese hamster ovary cells. The relative cytotoxicities of the six metal ion complexes are Cu(DTPA) greater than K3Fe(CN)6 greater than NiCl2 greater than chromium oxalate greater than Ni(DTPA) greater than Ni(EDTA). Thus, potassium ferricyanide and NiCl2, two most commonly used paramagnetic broadening agents, are relatively toxic to the cell. In contrast, among the six paramagnetic species tested here, chromium oxalate appears to be the most effective agent at non-toxic concentrations in inducing the broadening of the ESR spectra of both cationic and neutral nitroxide spin probes. By considering both their cytotoxicity and their effectiveness in causing line broadening of the nitroxide ESR spectra, chromium oxalate is a good paramagnetic broadening agent for spin probe studies of intact mammalian cells.  相似文献   

11.
Nitric oxide (NO) is well known to have a wide variety of biological and physiological functions in animals. On the basis of the fact that Fe(II)-dithiocarbamates react with NO, a Fe(II)-N-(dithiocarboxy)sarcosine complex (Fe(II)-DTCS) was proposed as a trapping agent for endogenous NO. However, quantitative pharmacokinetic investigation for NO-Fe(II)-dithiocarbamate complexes in experimental animals has been quite limited. This paper describes the results on the quantitative pharmacokinetic features of a NO-Fe(II)-N-DTCS in both the blood and bile of rats following intravenous (i.v.) administration of the complex. For this purpose, we applied two in vivo methods, i.e. (1) in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) which previously developed, and (2) in vivo biliary excretion monitoring-electron spin resonance (BEM-ESR). We monitored real-time ESR signals due to nitrosyl-iron species in the circulating blood and bile flow. The ESR signal due to NO-Fe(II)-DTCS was stable in biological systems such as the fresh blood and bile. In in vivo BCM- and BEM-ESR, the pharmacokinetic parameters were calculated on the basis of the two-compartment and hepatobiliary transport models. The studies also revealed that the compound is widely distributed in the peripheral organs and partially excreted into the bile. We named a kinetic method to follow spin concentrations as spinnokinetics and this method will be useful for detecting and quantifying the endogenously generated NO in Fe(II)-DTCS administered animals.  相似文献   

12.
Different approaches based on the spin probe method were used to compare the physical state of the surface lipid monolayer in subfractions of low-density lipoproteins: in native low-density lipoproteins constituting the bulk of human blood low-density lipoproteins and in circulating multiple-modified low-density lipoproteins whose portion is minor in healthy persons but significantly increases in atherosclerotic patients. The data obtained in in vitro experiments suggest that circulating multiple-modified low-density lipoproteins possess atherogenic properties. The order parameter S, rotational correlation time tau, and hydrophobicity parameter h were calculated from electron spin resonance spectra of a series of spin probes whose paramagnetic groups are located at different depths of the lipid monolayer. These parameters characterize the molecular packing, fluidity, and polarity in the microenvironment of paramagnetic groups. The kinetics of the reduction of paramagnetic groups by ascorbate and oxidation by hypochlorite were obtained for the spin probe whose paramagnetic group is located deeply in the lipid monolayer at the level of the terminal segments of phospholipid acyl chains. No difference between native low-density lipoproteins and circulating multiple-modified low-density lipoproteins was revealed in respect of the physical properties of the lipid domain of surface proteolipid layer, as sampled by spin probes.  相似文献   

13.
The detection, quantification, and imaging of short-lived reactive oxygen species, such as superoxide, in live biological specimens have always been challenging and controversial. Fluorescence-based methods are nonspecific, and electron spin resonance (ESR) spin-trapping methods require high probe concentrations and lack the capability for sufficient image resolution. In this work, a novel (to our knowledge), sensitive, small ESR imaging resonator was used together with a stable spin probe that specifically reacts with superoxide with a high reaction rate constant. This ESR spin-probe-based methodology was used to examine superoxide generated in a plant root as a result of an apical leaf injury. The results show that the spin probe rapidly permeated the plant's extracellular space. Upon injury of the plant tissue, superoxide was produced and the ESR signal decreased rapidly in the injured parts as well as in the distal part of the root. This is attributed to superoxide production and thus provides a means of quantifying the level of superoxide in the plant. The spin probe's narrow single-line ESR spectrum, together with the sensitive imaging resonator, facilitates the quantitative measurement of superoxide in small biological samples, such as the plant's root, as well as one-dimensional imaging along the length of the root. This type of methodology can be used to resolve many questions involving the production of apoplastic superoxide in plant biology.  相似文献   

14.
Changes of paramagnetic centres concentration characterized by g-factors values of 1.94, 2.2, and 2.03 in the rat liver were studied by ESR method under acute intoxication by diethylnitrosamine (DENA) and at preliminary threefold treatment of animals with butylhydroxytoluene (BHT). A protective effect of BHT can be explained by its stabilizing action of the membrane structures. A comparison has been carried out with a similar study of paramagnetic centres in the experiment of chronic intoxication by DENA. A simulation was performed of the liver tissue ESR spectra by means of special computer program. The parameters of simulated ESR spectra of the liver tissue with due regard for ESR signal g 2.03 corresponded to the parameters of the experimental spectra. Confirmations were obtained for the nature and number of paramagnetic centres in the liver tissue.  相似文献   

15.
Free radicals and other paramagnetic species, play an important role in cellular injury and pathophysiology. EPR spectroscopy and imaging has emerged as an important tool for non-invasive in vivo measurement and spatial mapping of free radicals in biological tissues. Extensive applications have been performed in small animals such as mice and recently applications in humans have been performed. Spatial EPR imaging enables 3D mapping of the distribution of a given free radical while spectral-spa-tial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be determined. A variety of spatial, and spectral-spatial EPR imaging applications have been performed. These techniques, along with the use of biocompatible paramagnetic probes including particulate suspensions and soluble nitroxide radicals, enable spatial imaging of the redox state and oxygenation in a variety of biomedical applications. With spectral-spatial EPR imaging, oxygenation was mapped within the gastrointestinal (GI) tract of living mice, enabling measurement of the oxygen gradient from the proximal to the distal GI tract. Using spatial EPR imaging, the distribution and metabolism of nitroxide radicals within the major organs of the body of living mice was visualized and anatomically co-registered by proton MRI enabling in vivo mapping of the redox state and radical clearance. EPR imaging techniques have also been applied to non-invasively measure the distribution and metabolism of topically applied nitroxide redox probes in humans, providing information regarding the penetration of the label through the skin and measurement of its redox clearance. Thus, EPR spectroscopy and imaging has provided important information in a variety of applications ranging from small animal models of disease to topical measurement of redox state in humans.  相似文献   

16.
The optical and paramagnetic properties of size-controlled ink particles isolated from ink sacs of Sepia officinalis were investigated. Topographic images of atomic force microscopy (AFM) revealed that the average heights of the large and small ink particles were 156 nm and 5.3 nm respectively. The ultraviolet-visible (UV-VIS) spectral features of aqueous solutions of ink particles were dependent on particle size. Electron spin resonance (ESR) spectra suggested that the ink particles are highly pure for paramagnetic species and are of reliable quality. These size-controlled ink particles are suitable for a basic study of melanin-related materials.  相似文献   

17.
Application of computer analysis to ESR spectra of maleimide spin labels in erythrocyte ghosts and ESR spectra of "spin sacks"--erythrocyte ghosts and liposomes containing concentrated solution of non-penetrating spin label was described. The analysis of the ESR spectra of spin labels gives exhausting information about the parameters of spin hamiltonian, peculiarities of the movement of nitroxyl radicals and their distribution between the cell and medium.  相似文献   

18.
The recent development of electron paramagnetic resonance (EPR) permits its application for in vivo studies of nitric oxide (NO). In this study, we tried to obtain 3D EPR images of endogenous NO in the abdominal organs of lipopolysuccaride (LPS) treated mice. Male ICR mice, each weighing about 30 g, received 10 mg/kg of LPS intraperitoneally. Six hours later, a spin trapping reagent comprised of iron and an N-dithiocarboxy sarcosine complex (Fe(DTCS)2, Fe 200 mM, DTCS/Fe = 3) were injected subcutaneously. Two hours after this treatment, the mice were fixed in a plastic holder and set in the EPR system, equipped with a loop-gap resonator and a 1 GHz microwave. NO was detected as an NO-Fe(DTCS)2 complex, which had a characteristic 3-line EPR spectrum. NO-Fe(DTCS)2 complexes in organ homogenates were also measured using a conventional X-band EPR system. NO-Fe(DTCS)2 spectra were obtained in the upper abdominal area of LPS treated mice at 8 h after the LPS injection. 3D EPR tiled and stereoscopic images of the NO distribution in the hepatic and renal areas were obtained at the same time. The NO-Fe(DTCS)2 distribution in abdominal organs was confirmed in each organ homogenate using conventional X-band EPR. This is the first known EPR image of NO in live mice kidneys.  相似文献   

19.
Free radicals and other paramagnetic species, play an important role in cellular injury and pathophysiology. EPR spectroscopy and imaging has emerged as an important tool for non-invasive in vivo measurement and spatial mapping of free radicals in biological tissues. Extensive applications have been performed in small animals such as mice and recently applications in humans have been performed. Spatial EPR imaging enables 3D mapping of the distribution of a given free radical while spectral-spatial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be determined. A variety of spatial, and spectral-spatial EPR imaging applications have been performed. These techniques, along with the use of biocompatible paramagnetic probes including particulate suspensions and soluble nitroxide radicals, enable spatial imaging of the redox state and oxygenation in a variety of biomedical applications. With spectral-spatial EPR imaging, oxygenation was mapped within the gastrointestinal (GI) tract of living mice, enabling measurement of the oxygen gradient from the proximal to the distal GI tract. Using spatial EPR imaging, the distribution and metabolism of nitroxide radicals within the major organs of the body of living mice was visualized and anatomically co-registered by proton MRI enabling in vivo mapping of the redox state and radical clearance. EPR imaging techniques have also been applied to non-invasively measure the distribution and metabolism of topically applied nitroxide redox probes in humans, providing information regarding the penetration of the label through the skin and measurement of its redox clearance. Thus, EPR spectroscopy and imaging has provided important information in a variety of applications ranging from small animal models of disease to topical measurement of redox state in humans.  相似文献   

20.
Clearance of the nitroxide radicals, hydroxy-TEMPO and carboxy-PROXYL, in whole-mouse lung was directly measured by in vivo ESR. After injecting a nitroxide radical, distribution of the nitroxide radical all over the lung was confirmed by ESR imaging. The ESR signal of hydroxy-TEMPO was reduced in the lung and the clearance obeyed first-order kinetics, whereas the signal of carboxy-PROXYL remained constant. Comparison of the clearance rates of live and dead mice indicated the presence of 2 different clearance systems in the lung: loss of its paramagnetism in the lung, and transfer from alveolar to the blood circulation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号