首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multistage tower laboratory fermentor has been constructed consisting of eight compartments separated by sieve plates. Flow of substrate and air is concurrent from the bottom to the top of the column. It, was hoped that this system could be used to reproduce, simultaneously on a continuous basis, eight distinct phases of a batch growth curve. It was believed that the extent of batch curve simulation would depend upon the character of hydraulic mean residence time of broth in the column and in the individual compartments. The expected relationship did not occur. Rather it was found that growth in the column involved residence time characteristics not only for the fluid but also for the microorganisms, and for the growth limiting substrate. Depending upon the column operation, these could be distinct and different. The purpose of this investigation was to study the residence time distribution (RTD) of the continous (fluid) and dispersed (microorganisms) phases for model systems as well as for a yeast fermentation. Various degrees of flow nonideality, i.e., fluid blackflow and dispersed phase sedimentation, were noticed. The former seems to be due to interaction of the concurrent gas and liquid flow; it is particularly dependent upon void area of the sieve plate holes. Sedimentation is probably a function of plate design as well as cell size and density. It wa concluded that for a particular plate design the gas hold-up wass controlled by superficial air velocity and was the main parameter governing the differences between dispersed and continous phase(Rt1). This conclusion was supported by a computeraided styudy utilizing a mathematical model of fluid flow to fit the growth kinetics and cell distribution observed experimentally throughout the fermentor. Some advantages of foam control in the tower fermentor by surface active compounds are mentioned. Also, suggestions are made for carrying out fermentations that have two liquid phases, such as a hydrocarbon fermentation. The possibility of closely approximating plug-flow conditions in the multistage tower fermentor, a necessary condition for batch growth simulation, is discussed from a practical point of view.  相似文献   

2.
The design of a continuous multistage tower fermentor is described. The fermentor consists of five stages separated by perforated plates. Each stage includes mechanical mixing provided by two disc turbine impellers and has its own impeller shaft with bearing assembly and flexible coupling that enables the operation of an arbitrary number of stages. The normal operation of this system enables the co-current flow of gas and liquid, but the system can function countercurrently as well. The purpose of this study was to examine the hydrodynamic performance, i.e., the pressure gradient along the tower, the mixing time, gas holdup, the residence lime distribution of the continuous phase, the value of the backflow coefficient, and the oxygen transfer rate under conditions usually used during fermentations. From the interrelations between parameters influencing the proper performance of this system, an optimal design of plate geometry for processes requiring high oxygen transfer rate was formulated.  相似文献   

3.
The significance of the interstage mixing on important process parameters of biomass production was studied. The experiments were performed in a multistage tower fermentor and in fermentors in series. The interstage mixing effect can be evaluated under conditions of geometrical similarity, identity of oxygen transfer rate, and identity of dilution rate per stage in the individual stages of both culture systems. Candida utilis was cultivated on a synthetic medium with ethanol as the sole carbon and energy source in the concentration range 10–100 g/liter. Dilution rate, temperature, and pH in each stage of both culture systems were kept constant. It was demonstrated that in the multistage tower fermentor the definite backflow which ensures the permanent reinoculation by adapted cells significantly decreases the inhibitory effect of higher ethanol concentrations on the cell growth and on the rate of ethanol utilization.  相似文献   

4.
A theoretical model is developed for continuous multistage enzyme production systems, which consist of a growth fermentor used for growing microorganisms rapidly without enzyme production and a subsequent system of induction reactors in which enzymes induction and production occurs. The model allows the computation of the fraction of induced cells residing in the induction reactor for organisms exhibiting a lag phase in enzyme induction. For this model a general analytical solution was obtained for the cumulative internal residence time distribution of a series of n well-stirred vessels with a recycle. The theoretical results are compared in a preliminary way with experimentally measured cellulase productivities of continuous multistage cellulose fermentations with Trichoderma viride QM 9414.  相似文献   

5.
This article describes the development of an industrial-scale, multistage fixed-bed tower (MFBT) bioreactor using the promoter mineral kissiris for industrial alcohol production using free cells. Specifically, we examined the parameters needed to maintain operational stability from batch to batch for long periods. Pilot plant operations used one- and two-stage fixed-bed, 7000-L bioreactors. Likewise a 100,000-L, multistage fixed-bed tower system containing layered kissiris confirmed the laboratory results. Compared with a continuous stirred tank fermentor (CSTF) with recycle, a 30% reduction of energy demand and 10%-20% of the production costs are obtained. The latter are attributed to the increased ethanol concentration and alcohol productivity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
Microorganisms were continuously cultivated in multistage column consisting of ten perforated plate sections to which medium and air were supplied concurrently from the bottom. At steady state the cell concentration in the various stages was gradationally differentiated from the bottom to the top in the direction of medium flow. RNA content per unit cell concentration at each sage was determined. The cells in the lower stages were higher in RNA content than those from the upper stages. Wash out was observed to occur in the column at dilution rates which do not result in wash out in a single stage chemostat system. A study of the flow characteristics revealed that the overall performance of the plate column was equivalent to that of a multistage system, when hole diameter and hole area to column cross sectional area ratio were properly selected. This was true even in highly aerated conditions. These results indicated that the perforated plates in the column hindred intermixing through the plates, and that each stage functioned as an independent stirred vessel. Industrial and research application of this type fermentor was discussed.  相似文献   

7.
A structured kinetic model has been employed to analyze the performance of a two-stage continuous fermentation of a recombinant Escherichia coli. Separating the cell growth phase from the gene expression phase in two fermentors minimizes the growth rate difference between the recombinant cells and the plasmid-free cells in the first fermentor, thereby increasing the plasmid stability. The plasmid-harboring cells from the first fermentor are continuously fed into the second fermentor, in which the foreign protein synthesis is turned on by the addition of the inducer. Consequently, the recombinant cells experience an immediate reduction in growth rates as soon as they enter the second stage and then recover to synthesize the foreign protein. To analyze the fermentation performance contributed by these cells with different intracellular foreign protein levels and growth rates, a novel method for determining the residence time distribution of the growing cells in the second stage has been formulated. Combined with this method, the structured kinetic model for recombinant bacterial cells is used to predict the plasmid stability and foreign productivity at various operation conditions, such as induction strength and dilution rates. This model can provide us with thorough understanding of the characteristics of the two-stage fermentations, and is useful for the development of large scale continuous cultures of recombinant bacteria.  相似文献   

8.
A rotating drum fermentor designed for plant cell suspension cultures was constructed and tested. The oxygen transfer coefficient (k(L)a) and power requirements in the fermentor were determined with the water system under various conditions and the relationship between them in the fermentor was clarified. Also, the relationship between k(L)a and the apparent viscosity in the fermentor was investigated in the cell suspension system. The rotating drum fermentor was found to be superior to the mechanically agitated fermentor in the capacity of oxygen supply under high viscosity and low hydrodynamic stress conditions. This finding was also confirmed by the experiments with plant cell suspension cultures.  相似文献   

9.
A reactor configuration consisting of two reactors with an exchange flow was used for the experimental simulation of large-scale conditions. The influence of fluctuations in oxygen concentration on the growth and metabolite production of baker's yeast was investigated by sparging one fermentor with air and one with nitrogen gas. It was found that the biomass yield decreased and the metabolite formation increased with rising circulation time (longer oxygen-unlimited and oxygen-limited periods). Not only was the performance of the oxygen-limited fermentor characterised by (partly) reductive metabolism, but that of the oxygen-unlimited fermentor as well. The results of the experiments in this reactor system were compared with those from the experiments carried out in a one-fermentor system with periodically changing oxygen concentrations. The formation of acetic acid, which is characteristic for transient states, showed a distinct difference between the two reactor systems.  相似文献   

10.
A mutant of Saccharomyces cerevisiae, which forms large, multicellular flocs in liquid culture, rapidly fermented media containing high concentrations of glucose (100-180 g/L) in a continuous nonaerated tower fermentor at 30 degrees C. The fermentor operated continuously for seven months. Batch and tower fermentor data were fitted to a kinetic model incorporating linear ethanol inhibition and Monod dependence on glucose. Conversion, ethanol yield, and ethanol productivity were related to the apparent fermentation time for initial glucose concentrations of 130 and 180 g/L. Productivities of 8-12 g ethanol/L h were achieved through the yeast bed giving conversions exceeding 90% of the theoretical yield.  相似文献   

11.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under steady-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release, and respiration quotient, as well as nitrogen, carbon, phosphorus, hydrogen, and protein content of the cells were measured in dependence on the dilution rate. Cell size distribution, as a function of the specific growth rate, was determined with the aid of a Celloscope 202. A fair agreement with the theory of continuous culture for all metabolic curves could be established. An increased turnover rate resulted from the addition of glutamic acid to the synthetic growth medium. The primary effect of this supplement could be a rise in the flow rate of the tricarboxylic acid cycle.  相似文献   

12.
Summary The growth characteristics of the yeastCandida utilis in the individual stages of a multistage tower fermentor obtained with single- and multistream ethanol feeding were compared. In addition, various types of pure oxygen supply were tested for each type of ethanol feed. The results, obtained from steady-state continuous cultures, provided evidence that the two types of ethanol and oxygen supply significantly affect the cell growth rate, ethanol dissimilation rate, acetate excretion in the medium, biomass yield and productivity.  相似文献   

13.
The effect of increasing the partial pressure of oxygen in the aeration gas on growth and physiological activity of the yeast Candida utilis in a multistage tower fermentor was studied. The measurements were made at steady states of continuous culture for single values of dilution rate, temperature, and pH in all stages of the fermentor and with one given ethanol concentration in the growth medium feed. The partial pressure of oxygen in the gas phase was changed in the range from 165 to 310 torr. The results revealed the existence of the upper critical value of the partial oxygen pressure in the gas phase. It was demonstrated that the upper critical value of PO 2 influences not only the growth rate, biomass yield, and productivity but also the cell physiology resulting in changes of respiration activity and activity of alcohol and aldehyde dehydrogenases.  相似文献   

14.
The design of a 125 liter aerated recirculating tower fermentor is presented. The tower has an external recirculation loop and a broth take-off point designed to give selective retention of biomass in the fermentor. This allows operation with high throughput rates using a low conentration feed. The aspect ratio in the main tower is approximately 14:1, but good mixing is promoted by the rapid recirculation of the broth. The construction of the fermentor and costs are given in details, illustrating that the fermentor may offer a cheap alternative to conventional systems.  相似文献   

15.
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors.  相似文献   

16.
The kinetics of microbial growth and product formation are described as applied to the high cell concentration scheme of the rotorfermentor. A bench scale pilot plant was designed and built in order to demonstrate the operational feasibility of the rotorfermentor. The fermentation of glucose to ethanol by Saccharomyces cerevisiae ATCC 4126 was used. When the rotorfermentor was used with a glucose feed concentration of 104 g/liter almost 100% glucose utilization was obtained and the ethanol productivity rate was 27.3 g ethanol/liter hr which was found to be about 10 times greater than the ethanol productivity obtained from an ordinary continuous stirred tank (CST) fermentor. The ethanol experimental results obtained from the rotorfermentor and an ordinary CST fermentor were used as a basis to assess the economic feasibility of the rotorfermentor. The economics of an industrial scale ordinary CST fermentor with and without cell recycle is compared with a rotorfermentor unit for the same ethanol production throughput. For the process conditions considered in this case, calculations showed that the rotorfermentor may replace both a CST fermentor and cell centrifuge resulting in lower capital equipment costs and lower power consumption requirements.  相似文献   

17.
A set of experiments has been performed in an industrial 112 m(3) fermentor in order to get a complete map of oxygen concentration and temperature distribution in the system. Five fermentations of non-Newtonian broths of two different strains, in various operating conditions, were examined. A simple model has been developed which takes into account both the mixing and the mass-transfer properties of the fermentor, and a dimensionless parameter has been identified which is sufficient to characterize the oxygen axial distribution in the reactor in any operating condition.  相似文献   

18.
Biomass growth, consumption of carbon and energy source, specific rates of formation of metabolic byproducts, biomass yield referred to the C-source and to oxygen, respiration rate and the value of RQ were studied in Klebsiella aerogenes CCM 2318 (on a synthetic glucose medium) at different specific growth rates. Maintenance coefficients and the total energy balance of the cultivation process were evaluated for a multistage tower fermentor with a defined interstage mixing. The results pointed to changes in both glucose metabolism and the physiological state of the population, brought about by changes in specific growth rate. As compared with a chemostat, the culture was found to exhibit a different physiological character is stages 1 and 4 despite a considerable interstage mixing.  相似文献   

19.
A distributed parameter model for an airlift fermentor is presented. A riser represents the airlift fermentor, with plug flow in both gas and liquid phases, a well-mixed section that acts as gas separator, and a downcomer with plug flow. The set of equations proposed makes possible both the understanding and design of the system. Macroscopic balances shows a behavior that is very close to conventional continuous stirred tank fermentor from the viewpoint of biomass production. In addition, the model predicts concentration profiles of biomass, substrate and oxygen in the liquid, and oxygen in the gas phase. This allows estimation of optimal gas flow rate for sufficient oxygen transfer with minimum energy input.  相似文献   

20.
The design of a continuous column fermentor with a multiple staging effect is described. The column is divided into four compartments by horizontal perforated plates and is provided with a central agitator shaft driving an impeller in each compartment. A tube at the center of each plate forms a liquid seal around the shaft and also acts as a “downcomer.” The fermentor is normally operated with counter-current flow of gas and medium. Fresh medium is added to the top stage and product is withdrawn from the bottom. The effect of plate and agitator design on fermentor performance was studied in terms of factor such as oxygen transfer rate, gas holdup, and interstage mixing. By proper choice of the design parameters, the fermentor was made to approximate a perfect four-stage cascade in terms of reactor performance. Preliminary experiments were performed with air-water systems, but a more realistic picture of fermentor performance was obtained in experience involving propagation of Escherichia coli. Data for business and substrate concentrations in each stage confirmed the staging effect of the apparatus. The fermentor operated in a stable manner for periods of more than two weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号