首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
An exposure of isolated rat brain genomic DNA to oxidative stress in the form of iron salts (Fe2+) and ascorbate results in gene-specific DNA lesions detectable by a quantitative polymerase chain reaction (PCR) based assay in which PCR amplification efficiency of the affected genes (e.g. β-actin and p53) is grossly impaired. Such oxidative DNA lesions are prevented by hydroxyl radical scavengers like mannitol (20 mM) and sodium benzoate (20 mM) or by the antioxidant enzyme catalase (50 μg/ml) present in the incubation mixture during exposure to Fe2+ and ascorbate. When brain DNA isolated from young (4-6 months of age) and aged (20-24 months of age) rats are analyzed similarly by the PCR based method, the amplification levels of β-actin and p53 genes are noticeably decreased in the case of aged rat indicating an accumulation of gene-specific DNA lesions during brain aging.  相似文献   

2.
Unrepaired or erroneously repaired DNA lesions drive genomic instability and contribute to cellular and organ decline. Since delayed neuropathologies are common in survivors of smoke inhalation injuries, we asked whether the integrity of brain DNA might be compromised by acute exposure to combustion smoke. Although many studies demonstrate that the brain is equipped to repair oxidatively damaged DNA, to date, the capacity for accurate DNA repair under conditions of disrupted oxygenation and oxidative stress has not been defined. We show that DNA adducts detectable by their ability to block PCR amplification form in the rat hippocampus after acute exposure to smoke. To identify the different types of adducts and to dissect their temporal formation and repair profiles in vivo in the brain, we used DNA-modifying enzymes to convert specific adducts into strand breaks prior to PCR amplification. Using this strategy, we detected formation of oxidative DNA adducts early on after smoke inhalation, while mismatched bases emerged at the later recovery times, potentially due to an erroneous DNA repair process. Erroneous repair can be mutagenic and because the initial smoke-induced oxidative damage to DNA is extensive, compromised fidelity of DNA repair may underlie neurotoxicity and contribute to delayed death of hippocampal neurons.  相似文献   

3.
4.
The PCR amplification of fragments of transcribed (beta-actin, p53) and nontranscribed (IgE, heavy chain) genes in brain and spleen DNA from gamma-irradiated and unirradiated 2- and 28-month-old rats was studied. The amplification levels of fragments of these genes in DNA from old rats were substantially lower than those from young rats, which suggested that these gene fragments in old-rat DNA contained lesions blocking thermostable polymerase in PCR. The beta-actin and IgE gene fragments of spleen DNA from old rats exhibited a significantly higher level of lesions inhibiting Tth polymerase compared to analogous fragments of brain DNA from the same animals. DNA from the tissues of gamma-irradiated rats showed the amount of damage inhibiting amplification to be dependent on animal age and the postirradiation time before DNA isolation. As judged from the changes in the amplification level of gene fragments, there was no preferential fast repair of lesions in the actively transcribed gene beta-actin compared to the nontranscribed gene IgE (heavy chain) in the brain and spleen of gamma-irradiated young and old rats. The amplification results suggest that equal amounts of DNA lesions were repaired in the brain of both old and young rats during the first 0.5 h of the postirradiation time (fast-repair phase), whereas in the subsequent postirradiation period over 5 h (slow-repair phase), the efficiency of damage elimination in the brain DNA of old rats was markedly lower. As for the spleen tissue, the elimination of lesions blocking Tth polymerase was much lower in old gamma-irradiated animals for both of the repair phases.  相似文献   

5.
A 3 338 bp DNA fragment including the open reading frame and 5′-flanking region of β-actin gene for black carp genome was obtained through PCR amplification. Analysis of the sequencing results indicated the ORF of black carp β-actin gene encoding a 375 amino acid protein that shares a high degree of conservation to other known actins. The black carp β-actin sequence showed 100% identity to common carp, grass carp, and zebrafish, 99.2% identity to human and Norway rat β-actin gene, 98.9% and 98.1% identity to chicken and Kenyan clawed frog β-actin gene, respectively. The promoter region of black carp β-actin gene was inserted into the promoterless pEGFP1 vector. The recombinant plasmid was microinjected into the fertilized eggs of mud loach before two-cell stage as well as transfected into HeLa cell line. GFP expression was found in 50% of mud loach embryos and 2/3 HeLa cells. The GFP expression could be observed in every part of the mud loach embryos, and in some embryos, the GFP was expressed in the whole body. Thus, the usefulness of black carp β-actin promoter as a ubiquitous expression promoter was confirmed using the EGFP as a reporter gene.  相似文献   

6.
为建立检测法夫酵母JMU-MVP14中虾青素合成相关基因在不同生长时期表达水平的实时定量PCR方法,构建法夫酵母JMU-MVP14的管家基因β-actin、gpd、18S rRNA的标准质粒,进行实时定量PCR,制作标准曲线及回归方程.β-actin基因标准曲线相关系数(R2)=0.9956,扩增效率(E) =96.93%;gpd基因标准曲线相关系数(R2) =0.9901,扩增效率(E) =93.78%;18S rRNA基因标准曲线相关系数(R2) =0.9981,扩增效率(E)=98.76%.3个基因片段的熔解曲线均呈单峰;扩增曲线呈典型的S型动力学曲线,指数期和平台期明显,为理想的熔解曲线和扩增曲线.用geNorm软件对三个管家基因的稳定性进行分析,三个基因的稳定性排序为β-actin> 18S rRNA> gpd,故β-actin和18S rRNA较适合作为研究法夫酵母JMU-MVP14定量实验的内参基因.  相似文献   

7.
DNA analysis with multiplex microarray-enhanced PCR   总被引:3,自引:2,他引:1       下载免费PDF全文
We have developed a highly sensitive method for DNA analysis on 3D gel element microarrays, a technique we call multiplex microarray-enhanced PCR (MME-PCR). Two amplification strategies are carried out simultaneously in the reaction chamber: on or within gel elements, and in bulk solution over the gel element array. MME-PCR is initiated by multiple complex primers containing gene-specific, forward and reverse, sequences appended to the 3′ end of a universal amplification primer. The complex primer pair is covalently tethered through its 5′ end to the polyacryl- amide backbone. In the bulk solution above the gel element array, a single pair of unattached universal primers simultaneously directs pseudo-monoplex PCR of all targets according to normal solution-phase PCR. The presence of a single universal PCR primer pair in solution accelerates amplification within gel elements and eliminates the problem of primer interference that is common to conventional multiplex PCR. We show 106-fold amplification of targeted DNA after 50 cycles with average amplification efficiency 1.34 per cycle, and demonstrate specific on-chip amplification of six genes in Bacillus subtilis. All six genes were detected at 4.5 pg of bacterial genomic DNA (equivalent to 103 genomes) in 60 independent amplification reactions performed simultaneously in single reaction chamber.  相似文献   

8.
Ferrous ion (Fe2+) has been considered to be a cause of neuronal oxidative injury. Since body fluids contain protein and serum is an essential component of tissue culture medium, we have examined the role of serum protein on Fe2+-mediated oxidative stress using PC12 cells and rat cerebral cortices. Fe2+ or the combination of ascorbate and Fe2+ increased concentrations of thiobarbituric acid reactive substances (TBARS) in PC12 cells and cerebrocortical homogenates in medium (RPMI 1640), but did not increase TBARS when the medium was supplemented with 10% fetal bovine serum. Treatment with ascorbate/Fe2+ in serum-free medium reduced endogenous glutathione (GSH) concentration in PC12 cells. However, the medium supplemented with serum did not reduce GSH concentrations. PC12 cell death induced by ascorbate/Fe2+ was alleviated by increasing serum or bovine albumin concentrations in the medium. These observations indicated that oxidative injury caused by the transition metal ion could be lessened by adding fetal bovine serum to culture medium.  相似文献   

9.
A comparison of rat brain and liver β-hydroxybutyrate dehydrogenase (EC 1.1.1.30) has revealed that significant differences exist between the enzymes with regard to their kinetic and physical properties. In contrast to the liver enzyme, brain β-hydroxybutyrate dehydrogenase is rapidly inactivated at 46° and is unstable when stored at ?20°. The brain dehydrogenase was found to have a larger Km (apparent) for the 3-acetylpyridine analog of NAD+, and a greater energy of activation in the direction of β-hydroxybutyrate oxidation than the liver enzyme. In the reverse direction, the brain and liver dehydrogenase exhibit substrate inhibition by NADH (0.22 mM and 0.36 mM, respectively). The brain and liver β-hydroxybutyrate dehydrogenase did not differ significantly with regard to the Michaelis-Menten constants measured for NAD+ and β-hydroxybutyrate. The Km constants of brain β-hydroxybutyrate dehydrogenase for acetoacetate (0.39 mM) and NADH (0.05 mM) were lower than those determined for the liver enzyme, acetoacetate (0.73 mM) and NADH (0.35 mM) respectively. These results suggest that the β-hydroxybutyrate dehydrogenase from rat brain and liver are isozymic variants.  相似文献   

10.
青鱼β-actin基因克隆及其启动子功能的初步检测   总被引:10,自引:0,他引:10  
冯浩  成嘉  骆剑  刘少军  刘筠 《遗传学报》2006,33(2):133-140
高保真PCR克隆青鱼β-actin基因开放阅读框和5’端侧翼序列,DNA测序结果表明:青鱼β-actin基因开放阅读框编码一段含375个氨基酸的蛋白,与其他物种actin家族相比较具有高度保守性。青鱼β-actin与鲤鱼、草鱼及斑马鱼的同源性均为100%,而与人和Norway鼠β-actin的同源性均为99.2%,与鸡和Kenyan爪蟾β-actin的同源性分别为98.9%和98.1%。将青鱼β-actin基因5’端启动调控区插入不含启动子的pEGFP1载体构建青鱼β-actin启动子/EGFP表达载体,与第一次卵裂之前显微注射该重组质粒入泥鳅受精卵,同时也用该重组质粒转染HeLa细胞系。观察结果表明:GFP在50%的泥鳅胚胎和2/3的HeLa细胞有所表达。GFP在泥鳅胚胎的各个部分均有表达,且在某些胚胎中GFP的表达遍布全身。因此,以EGFP为报告基因证实了青鱼β-actin基因启动子为一种非特异性表达的启动子。  相似文献   

11.
Abstract

Ascorbate (20 mM) pretreatment of brain membrane suspensions at 37° produced a rapid irreversible loss of specific opioid binding. There was no reduction in specific 3H-haloperidol binding. Ascorbate induced loss of opioid binding under these experimental conditions was not blocked by low concentrations of EDTA or Mn++. In contrast, the slowly developing loss of opioid binding during exposure to 1 mM ascorbate at 23° was completely inhibited by 10?5M EDTA or Mn++. At 37°, D-isoasoorbate, and several other reducing agents (glutathione, dithiothreitol, oysteine) produced a loss of opioid binding similar to that seen with ascorbate. It is concluded that 1 mM ascorbate at 23°, and 20 mM ascorbate at 37°, destroy opioid binding sites by two independent mechanisms. Lipid peroxidation is implicated at low ascorbate concentrations; a reductive process appears to be responsible for the ascorbate induced loss of binding at higher concentrations.  相似文献   

12.
The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 μg?l?1) and ferric iron (20 and 40 mg?l?1), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose–response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose–effect relationships and synergistic effects were not observed.  相似文献   

13.
14.
Alzheimer disease (AD) is a progressive neurodegenerative disorder whose clinical manifestations appear in old age. The sporadic nature of 90% of AD cases, the differential susceptibility to and course of the illness, as well as the late age onset of the disease suggest that epigenetic and environmental components play a role in the etiology of late-onset AD. Animal exposure studies demonstrated that AD may begin early in life and may involve an interplay between the environment, epigenetics, and oxidative stress. Early life exposure of rodents and primates to the xenobiotic metal lead (Pb) enhanced the expression of genes associated with AD, repressed the expression of others, and increased the burden of oxidative DNA damage in the aged brain. Epigenetic mechanisms that control gene expression and promote the accumulation of oxidative DNA damage are mediated through alterations in the methylation or oxidation of CpG dinucleotides. We found that environmental influences occurring during brain development inhibit DNA-methyltransferases, thus hypomethylating promoters of genes associated with AD such as the β-amyloid precursor protein (APP). This early life imprint was sustained and triggered later in life to increase the levels of APP and amyloid-β (Aβ). Increased Aβ levels promoted the production of reactive oxygen species, which damage DNA and accelerate neurodegenerative events. Whereas AD-associated genes were overexpressed late in life, others were repressed, suggesting that these early life perturbations result in hypomethylation as well as hypermethylation of genes. The hypermethylated genes are rendered susceptible to Aβ-enhanced oxidative DNA damage because methylcytosines restrict repair of adjacent hydroxyguanosines. Although the conditions leading to early life hypo- or hypermethylation of specific genes are not known, these changes can have an impact on gene expression and imprint susceptibility to oxidative DNA damage in the aged brain.  相似文献   

15.
The effect of intraperitoneal administration of α-tocopherol (100 mg/kg weight/24 h) on ascorbate (0–0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by α-tocopherol (control-group: 114.32±14.4; vitamin E-group: 17.45±2.84, c.p.m.×10−4). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 ±0.12; vitamin E-group: 10.52 ±0.46). Ratios of the α-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

16.
Dynamic equilibria in iron uptake and release by ferritin   总被引:7,自引:0,他引:7  
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5 m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations.  相似文献   

17.
The ATP.Mg-dependent type 1 protein phosphatase is inactive as isolated but can be activated in several different ways. In this report, we show that the phosphatase can also be activated by the Fe2+/ascorbate system. Activation of the phosphatase requires both Fe2+ ion and ascorbate and the level of activation is dependent on the concentrations of Fe2+ ion and ascorbate. In the presence of 20 mM ascorbate, the Fe2+ ion concentrations required for half-maximal and maximal activation are about 0.3 and 3mM, respectively. Several common divalent metal ions, including Co2+, Ni2+, Cu2+, Mg2+, and Ca2+ ions, cannot cooperate with ascorbate to activate the phosphatase, and SH-containing reducing agents such as 2-mercaptoethanol and dithiothreitol cannot cooperate with Fe2+ ion to activate the phosphatase, indicating that activation of the phosphatase by the Fe2+/ascorbate system is a specific process. Moreover, H2O2, a strong oxidizer, could significantly diminish the phosphatase activation by the Fe2+/ascorbate system, suggesting that reduction mechanism other than SH-SS interchange is a prerequisite for the Fe2+/ascorbate-mediated phosphatase activation. Taken together, the present study provides initial evidence for a new mode of type 1 protein phosphatase activation mechanism.  相似文献   

18.
Abstract: Ascorbic acid and glutathione (GSH) are antioxidants and free radical scavengers that provide the first line of defense against oxidative damage in the CNS. Using HPLC with electrochemical detection, we determined tissue contents of these antioxidants in brain and spinal cord in species with varying abilities to tolerate anoxia, including anoxia-tolerant pond and box turtles, moderately tolerant garter snakes, anoxia-intolerant clawed frogs (Xenopus laevis), and intolerant Long-Evans hooded rats. These data were compared with ascorbate and GSH levels in selected regions of guinea pig CNS, human cortex, and values from the literature. Ascorbate levels in turtles were typically 100% higher than those in rat. Cortex, olfactory bulb, and dorsal ventricular ridge had the highest content in turtle, 5–6 µmol g?1 of tissue wet weight, which was twice that in rat cortex (2.82 ± 0.05 µmol g?1) and threefold greater than in guinea pig cortex (1.71 ± 0.03 µmol g?1). Regionally distinct levels (2–4 µmol g?1) were found in turtle cerebellum, optic lobe, brainstem, and spinal cord, with a decreasing anterior-to-posterior gradient. Ascorbate was lowest in white matter (optic nerve) in each species. Snake cortex and brainstem had significantly higher ascorbate levels than in rat or guinea pig, although other regions had comparable or lower levels. Frog ascorbate was generally in an intermediate range between that in rat and guinea pig. In contrast to ascorbate, GSH levels in anoxia-tolerant turtles, 2–3 µmol g?1 of tissue wet weight, were similar to those in mammalian or amphibian brain, with no consistent pattern associated with anoxia tolerance. GSH levels in pond turtle CNS were significantly higher (by 10–20%) than in rat for several regions but were generally lower than in guinea pig or frog. GSH in box turtle and snake CNS were the same or lower than in rat or guinea pig. The distribution GSH in the CNS also had a decreasing anterior-to-posterior gradient but with less variability than ascorbate; levels were similar in optic nerve, brainstem, and spinal cord. The paradoxically high levels of ascorbate in turtle brain, which has a lower rate of oxidative metabolism than mammalian, suggest that ascorbate is an essential cerebral antioxidant. High levels may have evolved to protect cells from oxidative damage when aerobic metabolism resumes after a hypoxic dive.  相似文献   

19.
An electrochemical biosensor, using a disposable electrochemical printed chip aggregation by the bisbenzimide dye (Hoechst 33258), was used for detecting the expression of β-actin and RAGE genes. Using linear sweep voltammetry, the expression of these two genes in HeLa and HepG2 cell lines was determined based on anodic peak current, and the results were compared with conventional agarose gel electrophoresis. Total cellular RNA was reverse transcribed to complementary DNA, and amplification by PCR was carried out. Subsequently, the PCR products were subjected to detection by either electrophoresis or electrochemical biosensor. Precision of the electrochemical biosensor technique was acceptable (β-actin: CV = 1.875% for 10(4) copies and 4.684% for 10(9) copies; RAGE: CV = 2.253% for 10(9) copies, and 3.743% for 10 copies). In the electrochemical biosensor technique, the PCR products were measured in the same run with various concentrations of standards, and copy numbers of β-actin gene were interpolated from a standard curve. Copy numbers of the β-actin gene were then compared between the two techniques. At the 95% confidence limit, the two methods had no significant differences and were significantly correlated (y = -40383.0623 + 1.0233x; P > 0.10). The electrochemical biosensor method was more sensitive than the conventional electrophoresis method because it could detect as low as 10 copies of the RAGE gene. The conventional electrophoresis method detected the RAGE gene at concentrations of at least 10(4) copies, and the linearity for semi-quantitative measurement was in the range of 10(6)-10(9) copies. When the electrochemical biosensor was applied to detect the RAGE gene expression in both cell types, we found that HeLa cells expressed the RAGE gene about 2-fold higher than in HepG2 cells (relative value of 0.000905 vs 0.0004670). Therefore, this study suggests the potential modification of the electrochemical biosensor with the use of bisbenzimide dye (Hoechst 33258) for detecting gene expression.  相似文献   

20.
Five wheat (Triticum aestivum) varieties differing in chapati quality characteristics viz. C-306, K-68, HD-2745 and HD-2735 with good and Sonalika with poor chapati quality characteristics, were selected for the characterization or distribution of glutenin genes. Polymorphism was observed when genomic DNA of wheat varieties was hybridized with a HMW glutenin probe [glutenin subunit 10 (Dy10)]. No hybridization was observed in Sonalika. PCR amplification of genomic DNA with the LMW glutenin gene-specific primers did not show any polymorphism. However, with HMW glutenin gene-specific primers a single band of ~ 650 by was obtained in all the good chapati characteristic wheat varieties.The amplified fragment was sequenced and found to have sequence homology with HMW glutenin subunit Dx5.The deduced protein structure analysis showed that the peptide was made up of N-terminally placed (x-helices and centrally placed repetitive β-turns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号