首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Frequent melanization of larvae of the nematode Dirofilaria immitis parasitizing the Malpighian tubules of the mosquito, Aedes sollicitans, has been observed. Melanized and nonmelanized larvae in the Malpighian tubules were examined using light and electron microscopy. The results indicate that the pattern of melanin deposition and the ultrastructural characteristics of the pigment around the worms are identical to that observed on nematodes which have undergone humoral melanization in other dipteran insects. In the Malpighian tubules, no contact between the intracellular melanized nematodes and the hemolymph or hemocytes was observed. The results suggest that the Malpighian tubules of this species of mosquito are capable of inducing a melanotic response to invading nematode parasites. It is proposed that this is an example of “humoral” melanization at an intracellular site.  相似文献   

3.
The external morphology of contact-chemoreceptive hairs (taste hairs) of six fly species, Calliphora vicina, Lucilia caesar, Musca domestica, Phormia terranovae, Sarcophaga carnaria and Stomoxys calcitrans, is described. The species can be distinguished by the differences between the patterns of taste hairs at the ventral side of their prothoracic tarsi. Taste hairs can be subdivided into morphological types, using the shape of the cuticle around the apical pore as criterion, even though this shape changes slightly on opening and closing of the pore. Light microscopical studies reveal that the nature and osmolarity of stimuli are decisive for the effect stimuli have on the shape of the top of the labellar hairs. The motions of the apical cuticle appear to be reversible. Gentle ultrasonic treatment preserves the shape of the cuticle of the top and the diameter of the pores on fluid stimulation. This technique makes it possible to study the effect of a previous stimulation on both tarsal and labellar hairs with the scanning electron microscope. It is supposed that stimuli can affect cuticular components around the pore, producing volume changes in that cuticle which alter the diameter of the pore.  相似文献   

4.
This review considers the effects of temperature on insect diapause induction and the photoperiodic response, and includes constant temperature, temperature cycles, pulses and steps in daily light–dark cycles, constant darkness and in constant light, all with reference to various circadian‐based “clock” models. Although it is a comparative survey, it concentrates on two species, the flesh fly Sarcophaga argyrostoma and its pupal parasite Nasonia vitripennis, which possess radically different photoperiodic mechanisms, although both are based upon the circadian system. Particular attention is given to the effects of daily thermoperiod in darkness and to low and high temperature pulses in conjunction with a daily light–dark cycle, treatments that suggest that S. argyrostoma “measures” night length with a “clock” of the external coincidence type. However, N. vitripennis responds to seasonal changes in photoperiod with an internal coincidence device involving both “dawn” and “dusk” oscillators. Other species may show properties of both external and internal coincidence. Although the precepts of external coincidence have been well formulated and supported experimentally, those for internal coincidence remain obscure.  相似文献   

5.
The major pathway leading to adult cuticle melanization in Drosophila melanogaster has been investigated by a combination of biochemical and genetic approaches. By comparing catecholamine pools in newly emerged flies and in frass (excreta) collected 1 to 4 days after eclosion from wild type with those obtained from several pigmentation mutants, the major flow of catecholamines through the pathway to an unidentified final catabolite was determined. We also demonstrate that incubation with dopamine in vitro induces premature melanization in wild type unpigmented pharate adults several hours before the developmentally programmed onset of melanization, supporting the hypothesis that the availability of catecholamines may be the limiting factor determining the onset of melanization and that the major enzymatic activities that act downstream of dopa decarboxylase in the pathway are deposited into the cuticle before pigmentation begins. In vitro melanization studies with various pigmentation mutants that are associated with critical enzymatic steps in Drosophila catecholamine metabolism are consistent with their proposed function and suggest a central role of N-β-alanyldopamine in adult cuticle pigmentation. © 1996 Wiley-Liss, Inc.  相似文献   

6.
In accordance with our earlier results, quinone methide formation was confirmed to be the major pathway for the oxidation of N-acetyldopamine (NADA) by cuticle-bound enzymes from Sarcophaga bullata larvae. In addition, with the use of a newly developed HPLC separation condition and cuticle prepared by gentle procedures, it could be demonstrated that 1, 2-dehydro-NADA and its dimeric oxidation products are also generated in the reaction mixture containing a high concentration of NADA albeit at a much lower amount than the NADA quinone methide water adduct, viz., N-acetylnorepinephrine (NANE). By using different buffers, it was also possible to establish the accumulation of NADA quinone in reaction mixtures containing NADA and cuticle. That the 1,2-dehydro-NADA formation is due to the action of a NADA desaturase system was established by pH and temperature studies and by differential inhibition of NANE production. Of the various cuticle examined, adult cuticle of Locusta migratoria, presclerotized cuticle of Periplaneta americana, and white puparial cases of Drosophila melanogaster exhibited more NADA desaturase activity than NANE generating activity, while the reverse was observed with the larval cuticle of Tenebrio molitor and pharate pupal cuticle of Manduca sexta. These studies indicate that both NADA quinone methide and 1, 2-dehydro NADA are formed during enzymatic activation of NADA in insect cuticle. Based on these results, a unified mechanism for β-sclerotization involving quinone methides as the reactive species is presented.  相似文献   

7.
The genetic and hormonal control of body colouration is investigated using two recessive genetic mutant strains, the reddish–brown (RB) mutant and an albino mutant, as well as a normal (pigmented) strain of the desert locust Schistocerca gregaria. The colour patterns of the RB nymphs are similar to those of a normal strain, although the intensity of the melanization is weaker in the former. Reciprocal crosses between the RB and albino mutants produce only normal phenotypes in the F1 generation. In the F2 generation, the normal, RB and albino phenotypes appear in a ratio of 9 : 3 : 4, indicating that two Mendelian units might determine the appearance of dark body colour and the intensity of melanization, respectively. In other words, at least two steps of regulation might be involved in the expression of body colour. Injections of [His7]‐corazonin, a neuropeptide inducing dark colour in this locust, fail to induce dark colour in albino nymphs but show a dose‐dependent darkening in RB nymphs in the range, 10 pmol to 1 nmol. Some RB nymphs become indistinguishable from normal individuals after injection of the peptide. Implantation of corpora cardiaca (CC) taken from RB mutants into other RB individuals induces darkening in the latter and CC from RB, albino and normal strains have similar dark colour‐inducing activity when implanted into albino Locusta migratoria. These results suggest the possibility that the RB mutant gene regulates the intensity of melanization, possibly through controlling the pathway of pigment biosynthesis associated with [His7]‐corazonin.  相似文献   

8.
A ventrally localized melanization inhibiting factor (MIF) has been suggested to play an important role in the establishment of the dorsal-ventral pigment pattern in Xenopus laevis [Fukuzawa and Ide: Dev. Biol., 129:25–36, 1988]. To examine the possibility that melanoblast expression might be controlled by local putative MIF and melanogenic factors, the effects of α-melanocyte stimulating hormone (α-MSH), a serum melanization factor (SMF) from X. laevis or Rana pipiens, and MIF on the “outgrowth” and “melanization” of Xenopus neural crest cells were studied. Outgrowth represents the number of neural crest cells emigrating from cultured neural tubes, and melanization concerns the percentage of differentiated melanophores among the emigrated cells. MSH or SMF stimulate both outgrowth and melanization. The melanogenic effect of Xenopus serum in this system is more than twice that of Rana serum. The actions of MSH and Xenopus serum on melanization seem to be different: 1) Stronger melanization is induced by Xenopus serum than by MSH, and the onset of melanization occurs earlier with Xenopus serum; 2) MSH stimulates melanization only in the presence of added tyrosine; and 3) MSH causes young melanophores to assume a prominent state of melanophore dispersion during culture, while Xenopus serum (10%) had only a slight dispersing effect and not until day 3. A fraction of Xenopus serum presumably containing molecules of a smaller molecular weight (MW <30 kDa) than that of a pigment promoting factor reported in calf serum [Jerdan et al.: J. Cell Biol., 100:1493–1498, 1985] produces the same remarkable melanogenic effects as does intact serum. While this fraction stimulates outgrowth, another fraction presumably containing larger molecules (MW > 100 kDa) does not. MIF contained in Xenopus ventral skin conditioned medium (VCM) inhibits both outgrowth and melanization dose dependently. When VCM is used in combination with MSH, the stimulating effects of MSH on both outgrowth and melanization are completely inhibited. In contrast, the stimulatory effects of Xenopus serum are not completely inhibited when combined with VCM, although melanization is reduced to approximately 40% that of controls. MIF activity was also found to be present in ventral, but not in dorsal, skin conditioned media of R. pipiens when tested in the Xenopus neural crest system. We suggest that ventrally localized MIF plays an important role in amphibian pigment pattern formation and that the interacting effects of MIF and melanogenic factors influence melanoblast differentiation, migration, and/or proliferation of neural crest cells to effect the expression of pigmentary patterns.  相似文献   

9.
Catecholamines were extracted from the cuticles of four strains of the cockroach Blattella germanica at different times 48 h after adult ecdysis and analyzed by reverse phase HPLC with electrochemical detection. The wild (VPl), black (Bl), orange (or), and yellow (y) phenotypes differ in cuticular pigmentation, particularly in the extent of melanization. N-β-Alanyldopamine (NBAD) and N-β-alanylnorepinephrine (NBANE) were major o-diphenolic compounds in extracts from cuticle of all strains during the main period of sclerotization. N-Acetyldopamine (NADA) and N-acetylnorepinephrine (NANE) were minor the first day after ecdysis, but accumulated to higher levels thereafter. Dopamine (DA) concentrations were higher in the darker pigmented cuticles of strains Bl and or than in the lighter-colored cuticles of strains VPl and y. Extractable DA rapidly increased in VPl, Bl, and or cuticles shortly after ecdysis, reached peak levels 6–24 h later, and then decreased after melanization. Only small amounts of DA were detected in strain y cuticle, whereas NBANE concentrations were very high. Therefore, high DA levels in cuticle are correlated with melanization that occurs during the first few hours after adult ecdysis, whereas sclerotization is correlated with high levels of the N-β-alanylcatecholamines. Sclerotization appears to be delayed in strain Bl, since only low concentrations of the N-acylated catecholamines accumulate until after melanization is completed.  相似文献   

10.
The noncalcified inner branchiostegal cuticle, which lines the branchial chamber, was examined histologically and ultrastructurally over the molt cycle in the blue crab, Callinectes sapidus. In intermolt crabs (stage C4) the epithelium underlying the inner cuticle is cuboidal and has abundant intercellular spaces and a prominent basement membrane. Apolysis occurs at stage D0 and dissolution of the cuticle is accompanied by the formation of numerous lysosomes in the epithelium. During stage D1, cells increase in height, apical mitochondria become more abundant, and the cuticle continues to be resorbed. An epicuticle is formed in early D2, arising from a fusion of small subunits apparently attached to short apical microvilli. Cuticle deposition continues through D2 and is complete by stage D3. By the time cuticle deposition is complete, the epithelium has become extremely columnar and cells are filled with bundles of microtubules. In stage D4, an amorphous electron‐dense core appears in the microtubule‐filled cells, which are attached to the cuticle at their apical end and anchored to their basement membrane at the basal surface. These microtubule‐filled cells persist through ecdysis, stage E, but during stage A1 the cores disappear and some organelles begin to reappear in the cytoplasm. By stage A2, the cells return to the cuboidal morphology seen in intermolt and remain so throughout the remainder of the molt cycle. This new pattern of cuticle deposition resembles that observed in the gills of crustaceans in that the cuticle is uncalcified and there is no postecdysial cuticle formation. However, instead of apolysis being delayed until just before ecdysis, the inner cuticle is formed during the first half of premolt, allowing the epithelial cells time to differentiate into a morphology that provides tensile strength for the stress of ecdysis. These new observations demonstrate that cuticle formation can follow very diverse structural and temporal patterns. In order to integrate and coordinate these diverse patterns, it is suggested that a suite of feedback mechanisms must be present. J. Morphol. 240:267–281, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
The yellow (y) gene of Drosophila is required for the formation of black melanin and its deposition in the cuticle. We have studied by immunohistochemical methods the temporal and spatial distribution of the protein product of the y gene during embryonic and pupal development and have correlated its expression with events of cuticle synthesis by the epidermal cells and with cuticle sclerotization. Except for expression in early embryos, the y protein is only found in the epidermal cells and may be secreted into the cuticle as it is being deposited. The amount of y protein in various regions of the embryo and pupa correlates directly with the intensity of melanization over any section of the epidermis. Expression of the y gene begins in the epidermal cells at 48 hr after pupariation and is well correlated with the beginning deposition of the adult cuticle. At this stage the adult cuticle is unsclerotized and unpigmented and dopa decarboxylase levels, a key enzyme in catecholamine metabolism which provides the crosslinking agents as well as the precursors for melanin, is low. As a separate event 26 hr after the onset of y gene expression, the first melanin deposition occurs in the head bristles and pigmentation continues in an anterior to posterior progression until eclosion. This melanization wave is correlated with elevated dopa decarboxylase activity. Crosslinking of the adult cuticle also occurs in a similar anterior to posterior progression at about the same time. We have shown by imaginal disc transplantation that timing of cuticle sclerotization depends on the position of the tissue along the anterior-posterior axis and that it is not an inherent feature of the discs themselves. We suggest that actual melanization and sclerotization of the cuticle by crosslinking are initiated at this time in pupal development by the availability of the catecholamine substrates which diffuse into the cuticle. Intensity of melanization and position of melanin pigment is determined by the presence or absence of the y protein in the cuticle, thus converting the y protein prepattern into the melanization pattern.  相似文献   

12.
Colletotrichum kahawae is the causal agent of coffee berry disease. Appressorial melanization is essential for the fungal penetration of plant cuticle. Epicatechin is abundant in green coffee berry pericarp. Inoculation of C. kahawae conidial suspension containing 1.2 mg epicatechin or catechin/ml did not affect conidial germination or appressorial formation but appressorial melanization was completely inhibited and infection by the treated conidia was less than 30% of the untreated control. Epicatechin and catechin may, therefore, prevent coffee berry disease by inhibition of the appressorial melanization of C. kahawae.  相似文献   

13.
The persistence length of lugworm cuticle collagen in 0.1M acetic acid was evaluated as 1600 ~ 1800 Å by Yamakawa-Fujii's model for a wormlike chain from the sedimentation constant and the intrinsic viscosity. The persistence length was further examined for a series of sample “collagen sonicates” produced by varying the duration of sonic irradiation. To estimate the salt effect on the persistence length, measurements were made over a range of NaCl concentrations from 0 to 0.1M. The results showed that the cuticle collagen and collagen sonicates had identical values of persistence length and that the neutral salt effect for the cuticle collagen was far smaller than that for DNA.  相似文献   

14.
15.
Ciona intestinalis L. tunic architecture and cell distribution were investigated with the electron microscope. The observations showed that the ascidian covering is formed by a thin outer cuticle, a subcuticle of variable width and a large single layer of ground substance. “Large granule”, morula, phagocyte and granulocyte are the cellular types encountered; they appear mainly in highly vacuolated states and are distributed throughout the whole tunic. The “large granule” cells, however, are mainly seen in the cuticle layer and the morula cells appear mostly in the outer zone of the ground substance. The role of these cells in tunic construction, repair and regeneration as well as their scavenging function are discussed.  相似文献   

16.
Like the adult wing, butterfly larvae are unique in their coloring. However, the molecular mechanisms underlying the formation of insect larval color patterns are largely unknown. The larva of the swallowtail butterfly Papilio xuthus changes its color pattern markedly during the 4th ecdysis. We investigated its cuticular color pattern, which is thought to be composed of melanin and related pigments derived from tyrosine. We cloned three enzymes involved in the melanin-synthesis pathway in P. xuthus: tyrosine hydroxylase (TH), dopa decarboxylase (DDC), and ebony. Whole-mount in situ hybridization showed that the expression of both TH and DDC is strongly correlated with the black markings. ebony is strongly expressed only in the reddish-brown area. The expression pattern of each enzyme coincides with the cuticular color pattern of the subsequent instar. We also investigated the uptake of melanin precursors into cultured integument. Inhibition of either TH or DDC activity prevents in vitro pigmentation completely. Addition of dopamine to integuments in the presence of TH inhibitor causes overall darkening without specific markings. From these results, specific larval cuticular color patterns are regulated by stage-specific colocalization of enzymes in epidermal cells rather than by the differential uptake of melanin precursors into individual epidermal cells. Epidermal cells expressing TH and DDC, but not ebony, produce the black cuticle, and epidermal cells expressing TH, DDC, and ebony produce the reddish-brown cuticle.  相似文献   

17.
Summary The adherence of zoospores of Lagenidium giganteum to the cuticle of mosquito larvae is the initial step in the infection process. Subsequently, a germ tube penetrates the integument, inducing a rapid melanization of the injured cuticle and epidermis. After entering the hemocoel the developing hyphae are occasionally encapsulated locally. This process is slow (6 to 12 h postincubation) and most frequently cell-free, although it can be mediated by circulating hemocytes. Sporadic hemocyte mediation of the humoral encapsulation process in larval stages of Culicidae adds a previously unreported dimension to this unusual type of defense reaction. The defense reactions of larvae of Aedes aegypti were ineffective against observed infection by Lagenidium giganteum.  相似文献   

18.
The cuticle is a proteinaceous layer covering the avian egg and is believed to form a defence to microorganism ingress. In birds that lay eggs in challenging environments, the cuticle is thicker, suggesting evolutionary pressure; however, in poultry, selection pressure for this trait has been removed because of artificial incubation. This study aimed to quantify cuticle deposition and to estimate its genetic parameters and its role on trans‐shell penetration of bacteria. Additionally, cuticle proteins were characterised to establish whether alleles for these genes explained variation in deposition. A novel and reliable quantification was achieved using the difference in reflectance of the egg at 650 nm before and after staining with a specific dye. The heritability of this novel measurement was moderate (0.27), and bacteria penetration was dependent on the natural variation in cuticle deposition. Eggs with the best cuticle were never penetrated by bacteria (< 0.001). The cuticle proteome consisted of six major proteins. A significant association was found between alleles of one of these protein genes, ovocleidin‐116 (MEPE), and cuticle deposition (= 0.015) and also between alleles of estrogen receptor 1 (ESR1) gene and cuticle deposition (= 0.008). With the heritability observed, genetic selection should be possible to increase cuticle deposition in commercial poultry, so reducing trans‐generational transmission of microorganisms and reversing the lack of selection pressure for this trait during recent domestication.  相似文献   

19.
Summary WhenManduca sexta larvae are allatectomized 5 h before head capsule slippage (HCS) in the final larval molt, the new larval cuticle contains granules that melanize 3 h before ecdysis when the ecdysteroid titer falls (Curtis et al. 1984). In both the epidermis and hemolymph of these allatectomized larvae dopamine was higher than dopa prior to and at the time of melanization. Dopamine also increased in the new cuticle as melanization began. Dopa decarboxylase (DDC) activity increased in the epidermis, cuticle, and fat body beginning 16 h after HCS, with a two-fold greater increase in the epidermis of allatectomized larvae. Both -MDH and -fluoromethyl-dopa inhibited epidermal DDC activity and inhibited melanization in vitro when dopa was used as a precursor. Addition of dopamine to the medium allowed melanization in the presence of the inhibitors. All these results indicate that dopamine is likely the primary precursor of cuticular melanin. The diphenoloxidase in the premelanin granules was activated in vivo between 19 and 21 h after HCS and was found to prefer dopamine to dopa and not to convert tyrosine to melanin. The activation of the prophenoloxidase was inhibited by 20-hydroxyecdysone (20-HE), both in vivo and in vitro, if hormone was given by 16 h after HCS. Infusion of 1.2 g/ml 20-HE into allatectomized larvae for 24 h from HCS prevented both the increase in DDC activity and the activation of the premelanin granules. Although the larvae ecdysed after a 15 h delay, melanization never occurred.Abbreviations -MDH L-3-(3,4 dihydroxyphenyl)-2-hydrazine-methylpropionic acid - -FM-dopa R-S--fluoromethyl-dopa - DCC dopa decarboxylase - 20-HE 20-hydroxyecdysone - JH juvenile hormone - HCS head capsule slippage  相似文献   

20.
The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin‐binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic “R&R” chitin‐binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc‐containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full‐length BmWCP4 protein, “R&R” CBD peptide (CBD), non‐CBD peptide (BmWCP4‐CBD?), four single site‐directed mutated peptides (M1, M2, M3 and M4) and four‐sites‐mutated peptide (MF) were generated and purified, respectively, for in vitro chitin‐binding assay. The results indicated that both the full‐length protein and the “R&R” CBD peptide could bind with chitin, whereas the BmWCP4‐CBD? could not bind with chitin. The single residue mutants M1, M2, M3 and M4 reduced but did not completely abolish the chitin‐binding activity, while four‐sites‐mutated protein MF completely lost the chitin‐binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva‐to‐pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号