首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801-806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.  相似文献   

2.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.  相似文献   

3.
The relationship between the increase of intracellular Ca2+ and the release of arachidonic acid by bradykinin and pyrophosphonucleotides was studied in cultured mammary tumour cells, MMT060562. Bradykinin, ATP, UTP and UDP induced an increase of intracellular Ca2+ and the release of arachidonic acid from phospholipids into the extracellular fluid. Release of arachidonic acid was also induced by the application of the Ca2+ ionophore, A23187. Liberation of arachidonic acid by bradykinin and ATP was reduced by mepacrine, a blocker of phospholipase A2 and W-7, a calmodulin antagonist. It is suggested that the increase in cytosolic Ca2+-induced release of arachidonic acid occurs through activation of calmodulin-dependent phospholipase A2.  相似文献   

4.
The ethanolamine plasmalogens are decreased whereas serine glycerophospholipids are significantly increased in plasma membrane phospholipid in affected regions of brain in Alzheimer's disease. This may be due to stimulation of Ca2+-independent plasmalogen-selective phospholipase A2, which was recently discovered in brain. This phospholipase A2 differs from other Ca2+-independent phospholipases A2 in response to ATP and various inhibitors. It may be responsible for excess release of arachidonic acid and accumulation of prostaglandins and lipid peroxides in AD. Accumulation of the above lipid metabolites due to abnormal receptor function and signal transduction may contribute to neurodegeneration in AD.  相似文献   

5.
Depolarization-evoked increases in intraterminal free Ca2+ are required for the induction of neurotransmitter release from nerve terminals. Although the mechanisms that regulate the voltage-induced accumulation of presynaptic Ca2+ remain obscure, there is evidence that the phospholipase-dependent accumulation of arachidonic acid, or its metabolites, may be involved. Therefore, fura-2 loaded hippocampal mossy fiber nerve endings were used to investigate the relationships between membrane depolarization, lipid metabolism and presynaptic Ca2+ availability. It was observed that depolarization of the nerve terminals with KCl induced an increase in intraterminal free calcium that was inhibited more than 90% by a combination of voltage-sensitive Ca2+ channel blockers. In addition, the K+-dependent effects on Ca2+ concentrations were attenuated in the presence of phospholipase A2 inhibitors, but were mimicked by the phospholipase A2 activator melittin and exogenous arachidonic acid. Both the melittin- and arachidonic acid-induced increases in presynaptic Ca2+ were reduced by voltage-sensitive Ca2+ channel blockers. The stimulatory effects of arachidonic acid appeared to be independent of its further metabolism to prostaglandins. In fact, inhibition of either cyclooxygenase or lipoxygenase pathways resulted in a potentiation of the depolarization-evoked increase in intraterminal free Ca2+. From these results, we propose that some portion of the depolarization-evoked increase in intraterminal free calcium depends on the activation of phospholipase A2 and the subsequent accumulation of unesterified arachidonic acid.  相似文献   

6.
《Free radical research》2013,47(1):681-689
Ischemia and reperfusion causes severe mitochondrial damage, including swelling and deposits of hyd-roxyapatite crystals in the mitochondrial matrix. These crystals are indicative of a massive influx of Ca2+ into the mitochondrial matrix occurring during reoxygenation. We have observed that mitochondria isolated from rat hearts after 90 minutes of anoxia followed by reoxygenation, show a specific inhibition in the electron transport chain between NADH dehydrogenase and ubiquinone in addition to becoming uncoupled (unable to generate ATP). This inhibition is associated with an increased H2O2 formation at the NADH dehydrogenase level in the presence of NADH dependent substrates. Control rat mitochondria exposed for 15 minutes to high Ca2+ (200 nmol/mg protein) also become uncoupled and electron transport inhibited between NADH dehydrogenase and ubiquinone. a lesion similar to that observed in post-ischem-ic mitochondria. This Ca2+ -dependent effect is time dependent and may be partially prevented by albumin, suggesting that it may be due to phospholipase A2 activation. releasing fatty acids, leading to both inhibition of electron transport and uncoupling. Addition of arachidonic or linoleic acids to control rat heart mitochondria, inhibits electron transport between Complex I and III. These results are consistent with the following hypothesis: during ischemia, the intracellular energy content drops severely, affecting the cytoplasic concentration of ions such as Na+ and Ca2+. Upon reoxygenation, the mitochondrion is the only organelle capable of eliminating the excess cytoplasmic Ca2+ through an electrogenic process requiring oxygen (the low ATP concentration makes other ATP-dependent Ca?' lransport systems non-operational). Ca2+-overload of mitochondria activates phospholipase A2 releasing free fatty acids, leading to uncoupling and inhibition of the interactions between Complex I and III of the respiratory chain. As a consequence, the NADH-dehydrogenase becomes highly reduced, and transfers electrons directly to oxygen generating O2.  相似文献   

7.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

8.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

9.
Fertilization activates development by stimulating a plethora of ATP consuming processes that must be provided for by an up-regulation of energy production in the zygote. Sperm-triggered Ca2+ oscillations are known to be responsible for the stimulation of both ATP consumption and ATP supply but the mechanism of up regulation of energy production at fertilization is still unclear. By measuring [Ca2+] and [ATP] in the mitochondria of fertilized mouse eggs we demonstrate that sperm entry triggers Ca2+ oscillations in the cytosol that are transduced into mitochondrial Ca2+ oscillations pacing mitochondrial ATP production. This results, during fertilization, in an increase in both [ATP]mito and [ATP]cyto. We also observe the stimulation of ATP consumption accompanying fertilization by monitoring [Ca2+]cyto and [ATP]cyto during fertilization of starved eggs. Our observations reveal that lactate, in contrast to pyruvate, does not fuel mitochondrial ATP production in the zygote. Therefore lactate-derived pyruvate is somehow diverted from mitochondrial oxidation and may be channeled to other metabolic routes. Together with our earlier findings, this study confirms the essential role for exogenous pyruvate in the up-regulation of ATP production at the onset of development, and suggests that lactate, which does not fuel energetic metabolism may instead regulate the intracellular redox potential.  相似文献   

10.
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca2+-dependent cytosolic phospholipase A2 (cPLA2) and Ca2+-independent phospholipase A2 (iPLA2), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca2+, even though iPLA2 has been thought to be Ca2+-independent. The source of Ca2+ for activation of cPLA2 is largely extracellular, whereas Ca2+ released from the endoplasmic reticulum can activate iPLA2 by a number of mechanisms. This review focuses on the role of Ca2+ in modulating cPLA2 and iPLA2 activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca2+ signal.  相似文献   

11.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

12.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

13.
Connexin hemichannels have a low open probability under normal conditions but open in response to various stimuli, forming a release pathway for small paracrine messengers. We investigated hemichannel-mediated ATP responses triggered by changes of intracellular Ca2+ ([Ca2+]i) in Cx43 expressing glioma cells and primary glial cells. The involvement of hemichannels was confirmed with gja1 gene-silencing and exclusion of other release mechanisms. Hemichannel responses were triggered when [Ca2+]i was in the 500 nM range but the responses disappeared with larger [Ca2+]i transients. Ca2+-triggered responses induced by A23187 and glutamate activated a signaling cascade that involved calmodulin (CaM), CaM-dependent kinase II, p38 mitogen activated kinase, phospholipase A2, arachidonic acid (AA), lipoxygenases, cyclo-oxygenases, reactive oxygen species, nitric oxide and depolarization. Hemichannel responses were also triggered by activation of CaM with a Ca2+-like peptide or exogenous application of AA, and the cascade was furthermore operational in primary glial cells isolated from rat cortex. In addition, several positive feed-back loops contributed to amplify the responses. We conclude that an elevation of [Ca2+]i triggers hemichannel opening, not by a direct action of Ca2+ on hemichannels but via multiple intermediate signaling steps that are adjoined by distinct signaling mechanisms activated by high [Ca2+]i and acting to restrain cellular ATP loss.  相似文献   

14.
The mitochondrial electron transport chain is the major source of reactive oxygen species (ROS) during cardiac ischemia. Several mechanisms modulate ROS production; one is mitochondrial Ca2+ uptake. Here we sought to elucidate the effects of extramitochondrial Ca2+ (e[Ca2+]) on ROS production (measured as H2O2 release) from complexes I and III. Mitochondria isolated from guinea pig hearts were preincubated with increasing concentrations of CaCl2 and then energized with the complex I substrate Na+ pyruvate or the complex II substrate Na+ succinate. Mitochondrial H2O2 release rates were assessed after giving either rotenone or antimycin A to inhibit complex I or III, respectively. After pyruvate, mitochondria maintained a fully polarized membrane potential (ΔΨ; assessed using rhodamine 123) and were able to generate NADH (assessed using autofluorescence) even with excess e[Ca2+] (assessed using CaGreen-5N), whereas they remained partially depolarized and did not generate NADH after succinate. This partial ΔΨ depolarization with succinate was accompanied by a large release in H2O2 (assessed using Amplex red/horseradish peroxidase) with later addition of antimycin A. In the presence of excess e[Ca2+], adding cyclosporin A to inhibit mitochondrial permeability transition pore opening restored ΔΨ and significantly decreased antimycin A-induced H2O2 release. Succinate accumulates during ischemia to become the major substrate utilized by cardiac mitochondria. The inability of mitochondria to maintain a fully polarized ΔΨ under excess e[Ca2+] when succinate, but not pyruvate, is the substrate may indicate a permeabilization of the mitochondrial membrane, which enhances H2O2 emission from complex III during ischemia.  相似文献   

15.
Arachidonic acid release and the effect of phospholipase inhibitors on various types of cell injuries and death to rabbit renal proximal tubule suspensions were determined. Proximal tubules were exposed to the mitochondrial inhibitor antimycin A (0.1 μM), the protonophore carbonyl cyanide ρ-trifluoromethoxypheitylhydrazone (1 μM FCCP), the oxidant tertbutyl hydroperoxide (0.5 mM TBHP), or the calcium ionophore ionomycin (5 μM) in the absence or presence of the putative phospholipase inhibitors dibucaine, mepacrine, chlorpromazine, or U-26384. The phospholipase inhibitors had no effect on the proximal tubule lactate dehydrogenase (LDH) release (a marker of cell death) produced by FCCP, antimycin A, or ionomycin after 1,2, or 2 hours of exposure, respectively. Only dibucaine and mepacrine decreased LDH release in TBHP-treated proximal tubules without decreasing TBHP-induced lipid peroxidation. Antimycin A and ionomycin did not release arachidonic acid from proximal tubules prelabeled with [1-14C] arachidonic acid. In contrast, TBHP released arachidonic acid from proximal tubules prior to the onset of cell death, and dibucaine and mepacrine decreased the TBHP-induced release. Thus, phospholipase inhibitors were cytoprotective in those injuries that produced arachidonic acid release. These results suggest that arachidonic acid release and phospholipase A2 activation play a contributing role in oxidant-induced renal proximal tubule cell injury and death but not in mitochondrial inhibitor- or calcium ionophore-induced proximal tubule cell injury and death.  相似文献   

16.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

17.
To gain a better understanding of Ca2+-induced Ca2+ release in central neurons, we have studied the increase in intracellular Ca2+ concentration ([Ca2+]i) induced by application of caffeine to cells cultured from embryonic mouse telencephalon (hippocampus or cortex). The magnitudes and distributions of changes in [Ca2+]i in neuron somata were measured by quantitative video microscopy. We observed that application of caffeine to pyramidally shaped neurons typically initiated an increase in [Ca2+]i in the cytoplasmic region between the nucleus and the base of a major dendrite. [Ca2+] in this region increased over a period of 3 to 6 s and was followed by, with a slight delay, a surge of Ca2+ that moved across the soma and into or over the nucleus. Similar Ca2+ that moved across the soma and into or over the nucleus. Similar Ca2+ responses to caffeine were observed in Ca2+-containing and nominally Ca2+-free external solutions, suggesting that caffeine was inducing Ca2+ release from intracellular stores. Ca2+ responses to caffeine were potentiated by inducing a tonic Ca2+ influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors activated by 0.3 μM glutamate and multiple responses to caffeine could be elicited by using this Ca2+ influx to refill the intracellular stores. Ryanodine inhibition of caffeine-induced Ca2+ release was use- and concentration-dependent; the median effective concentration EC50 for ryanodine declined from 22 μM for the first application of caffeine to 20 nM for the fourth. We conclude, based on these responses to caffeine, that ryanodine-sensitive mechanisms of intracellular Ca2+ release are active in hippocampal and cortical neurons and may be involved in generation of directed Ca2+ waves that engulf the nucleus. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

19.
Abstract: Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1–1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 µM thapsigargin (Tg), 10 µM 2,5-di-tert-butylhydroquinone, 1 µM ionomycin, or 100 µM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 µM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 µM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 µM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

20.
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) causes both Ca2+ release and Ca2+ influx in bovine adrenal chromaffin cells. To elucidate the mechanisms of PACAP-induced Ca2+ release, we investigated expression of PACAP receptors and measured inositol trisphosphates (IP3), cyclic AMP, and the intracellular Ca2+ concentration in bovine adrenal medullary cells maintained in primary culture. RT-PCR analysis revealed that bovine adrenal medullary cells express the PACAP receptor hop, which is known to couple with both IP3 and cyclic AMP pathways. The two naturally occurring forms of PACAP, PACAP38 and PACAP27, both increased cyclic AMP and IP3, and PACAP38 was more potent than PACAP27 in both effects. Despite the effects of PACAP on IP3 production, the Ca2+ release induced by PACAP38 or by PACAP27 was unaffected by cinnarizine, a blocker of IP3 channels. The potencies of the peptides to cause Ca2+ release in the presence of cinnarizine were similar. The Ca2+ release induced by PACAP38 or by PACAP27 was strongly inhibited by ryanodine and caffeine. In the presence of ryanodine and caffeine, PACAP38 was more potent than PACAP27. PACAP-induced Ca2+ release was unaffected by Rp-adenosine 3′,5′-cyclic monophosphothioate, an inhibitor of protein kinase A. Ca2+ release induced by bradykinin and angiotensin II was also inhibited by ryanodine and caffeine, but unaffected by cinnarizine. Although IP3 production stimulated by PACAP38 or bradykinin was abolished by the phospholipase C inhibitor, U-73122, Ca2+ release in response to the peptides was unaffected by U-73122. These results suggest that PACAP induces Ca2+ release from ryanodine/caffeine stores through a novel intracellular mechanism independent of both IP3 and cyclic AMP and that the mechanism may be the common pathway through which peptides release Ca2+ in adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号