首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Various lipases have been evaluated as biocatalysts for the enrichment of -linolenic acid from a commercial fungal oil derived from Mucor sp. by selective esterification of the fungal oil fatty acids with n-butanol or by selective hydrolysis of the oil. Lipase from M. miehei (Lipozyme), as compared to lipases from Candida cylindracea, Penicillium cyclopium, and Rhizopus arrhizus, was found to be most effective in the enrichment of -linolenic acid in unesterified fatty acids upon esterification of the fungal oil fatty acids with n-butanol. Thus, the -linolenic acid content could be raised from 10.4% in the starting material to 68.8% in the unesterified fatty acids. Selective hydrolysis of the fungal oil triacyglycerols using Lipozyme resulted in about 1.5-fold enrichment of -linolenic acid in the unhydrolysed acylglycerols. Other lipases tested, such as those from P. cyclopium, C. cylindracea, R. arrhizus, Penicillium sp. (Lipase G), porcine pancreas and Chromobacterium viscosum, were also rather ineffective in the enrichment of -linolenic acid by selective hydrolysis of the fungal oil triacylglycerols. Offprint requests to: K. D. Mukherjee  相似文献   

2.
The thermal oxidation of the membranes of linoleic acid vesicles was preceded by a lag period, as long as the membranes contained low levels of preformed peroxides. Incorporation of 0.034 to 0.170 mol% of nitroxide spin label increased the length of this lag between 4.8 and 10.1 times. At the same time, the intensity of the ESR signal fell. The inclusion of as little as 0.04 mol% of butylated hydroxytoluene in the membranes also lengthened the lag period by a factor of 2.5. However, a similar molar proportion of α-tocopherol was without effect. When the linoleic acid from which vesicle membranes were formed contained between 0.45 and 1.43 mol% of peroxide, α-tocopherol produced a significant increase in the lag period, during which the antioxidant was gradually oxidized.  相似文献   

3.
A highly sensitive and rapid method for the analysis of isradipine in human plasma using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was developed. The procedure involves a simple liquid–liquid extraction of isradipine and amlodipine (IS, internal standard) with methyl-t-butyl ether after alkaline treatment and separation by RP-HPLC. Detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode, monitoring the transitions m/z 372.1  m/z 312.2 and m/z 408.8  m/z 237.9, for quantification of isradipine and IS, respectively. The standard calibration curves showed good linearity within the range of 10 to 5000 pg/mL (r2  0.9998). The lower limit of quantitation (LLOQ) was 10 pg/mL. The retention times of isradipine (0.81 min) and IS (0.65 min) suggested the potential for high throughput of the proposed method. In addition, no significant metabolic compounds were found to interfere with the analysis. This method offered good precision and accuracy and was successfully applied for the pharmacokinetic and bioequivalence studies of 5 mg of sustained-release isradipine in 24 healthy Korean volunteers.  相似文献   

4.
Summary The production of -linolenic acid (GLA) and lipid was studied in Mucor rouxii CBS 416.77. In a fed-batch culture productivities of 39.4 mg/l per hour for GLA and 99 mg/l per hour for the total amount of lipid were determined at 18 h of cultivation. At this point the highest value of GLA in lipid (39.7%, w/w) was also reached. Production of GLA was also studied in a series of continuous cultures. It was observed that, in addition to growth rate, the nitrogen concentration of the input medium was of great importance for high productivities. The highest productivity values for GLA (37 mg/l per hour) and for lipid (95 mg/l per hour) were reached at a dilution rate of 0.10 h-1 with a concentration of 4.5g/l NH4Cl in the input medium.  相似文献   

5.
Chronic inflammation, mediated in large part by proinflammatory macrophage populations, contributes directly to the induction and perpetuation of metabolic diseases, including obesity, insulin resistance and type 2 diabetes. Polyunsaturated fatty acids (PUFAs) can have profound effects on inflammation through the formation of bioactive oxygenated metabolites called oxylipins. The objective of this study was to determine if exposure to the dietary omega-3 PUFA α-linolenic acid (ALA) can dampen the inflammatory properties of classically activated (M1-like) macrophages derived from the human THP-1 cell line and to examine the accompanying alterations in oxylipin secretion. We find that ALA treatment leads to a reduction in lipopolysaccharide (LPS)-induced interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production. Although ALA is known to be converted to longer-chain PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), DHA oxylipins were reduced overall by ALA treatment, as was LPS-induced secretion of EPA oxylipins. In contrast, we observed profound increases in oxylipins directly derived from ALA. Lipoxygenase products of linoleic acid were also dramatically increased, and LPS-induced production of AA oxylipins, particularly prostaglandin D2, was reduced. These results suggest that ALA may act to dampen the inflammatory phenotype of M1-like macrophages by a unique set of mechanisms distinct from those used by the long-chain omega-3 fatty acids EPA and DHA. Thus, there is strong rationale for investigating the functions of ALA oxylipins and lesser-known LA oxylipins since they hold promise as anti-inflammatory agents.  相似文献   

6.
1. Cerebral-cortex slices prelabelled with gamma-amino[1-(14)C]butyrate (GABA) were incubated in a glucose-saline medium. After the initial rapid uptake there was no appreciable re-entry of (14)C into the GABA pool, either from the medium or from labelled metabolites formed in the tissue. The kinetic constants of GABA metabolism were determined by computer simulation of the experimental results by using mathematical procedures. The GABA flux was estimated to be 0.03mumol per min/g, or about 8% of the total flux through the tricarboxylic acid cycle. It was found that the assumption of compartmentation did not greatly affect the estimates of the GABA flux. 2. The time-course of incorporation of (14)C into amino acids associated with the tricarboxylic acid cycle was followed with [1-(14)C]GABA and [U-(14)C]-glucose as labelled substrates. The results were consistent with the utilization of GABA via succinate. This was confirmed by determining the position of (14)C in the carbon skeletons of aspartate and glutamate formed after the oxidation of [1-(14)C]GABA. These results also indicated that under the experimental conditions the reversal of reactions catalysed by alpha-oxoglutarate dehydrogenase and glutamate decarboxylase respectively was negligible. The conversion of [(14)C]GABA into gamma-hydroxybutyrate was probably also of minor importance, but decarboxylation of oxaloacetate did occur at a relatively slow rate. 3. When [1-(14)C]GABA was the labelled substrate there was evidence of a metabolic compartmentation of glutamate since, even before the peak of the incorporation of (14)C into glutamate had been reached, the glutamine/glutamate specific-radioactivity ratio was greater than unity. When [U-(14)C]glucose was oxidized this ratio was less than unity. The heterogeneity of the glutamate pool was indicated also by the relatively high specific radioactivity of GABA, which was comparable with that of aspartate during the whole incubation time (40min). The rates of equilibration of labelled amino acids between slice and medium gave evidence that the permeability properties of the glutamate compartments labelled as a result of oxidation of [1-(14)C]GABA were different from those labelled by the metabolism of [(14)C]glucose. The results showed therefore that in brain tissue incubated under the conditions used, the organization underlying metabolic compartmentation was preserved. The observed concentration ratios of amino acids between tissue and medium were also similar to those obtaining in vivo. These ratios decreased in the order: GABA>acidic acids>neutral amino acids>glutamine. 4. The approximate pool sizes of the amino acids in the different metabolic compartments were calculated. The glutamate content of the pool responsible for most of the labelling of glutamine during oxidation of [1-(14)C]GABA was estimated to be not more than 30% of the total tissue glutamate. The GABA content of the ;transmitter pool' was estimated to be 25-30% of the total GABA in the tissue. The structural correlates of metabolic compartmentation were considered.  相似文献   

7.
The ischaemic vulnerability of the heart of spontaneously hypertensive rats (SHR) is enhanced after feeding an α-linolenic acid (LNA) enriched diet. Because oxygen radical-induced reactions (e.g. lipid peroxidation) are involved in the ischaemic damage, an increased susceptibility of the SHR heart to such damaging reactions might be the reason. As a sign of the enhanced susceptibility to lipid peroxidation of LNA-fed SHR, we found (measured as TBARS) higher plasma and heart lipid peroxide levels (3.84 ± 0.50 μmol/l vs 2.98 ± 0.78 μmol/l and 507 ± 127 nmol/g prot. vs 215 ± 80 nmol/g prot., respectively) after feeding LNA. Using Fe2+/Vit. C to induce lipid peroxidation in myocardial tissue homogenates, we demonstrated the enhanced susceptibility to lipid peroxidation of the LNA-fed SHR heart (68 ± 12 nmol/min × g prot. vs 40 ± 8 nmol/min × g prot.) also in vitro. The myocardial enrichment of n-3 polyunsaturated fatty acids (PUFA) resulting in a higher peroxidation index (Pl 227 vs. 170) and the loss in myocardial activities of the antioxidative enzymes (SOD: 76 ± 24 U × 103/g prot. vs 235 ± 150 U × 103/g prot.; GSH-Px: 32 ± 5 U/g prot. vs 110 ± 30 U/g prot.) by feeding LNA could be the cause of the increase in myocardial susceptibility to lipid peroxidation of PUFA supplemented SHR.  相似文献   

8.
A simple, rapid and accurate liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of mildronate in human plasma. Following a simple protein precipitation with methanol, the analyte was separated on a C18 column by isocratic elution with methanol and 10 mM ammonium acetate (55:45; v/v), and then analyzed by mass spectrometry in the positive ion MRM mode. Good linearity was achieved over a wide range of 0.01–20 μg/mL. The intra- and inter-batch precisions (as RSD, %) were less than 7.1%. The average extraction recovery was 87.5%. The method described above has been used, for the first time, to reveal the pharmacokinetics of mildronate injection in healthy subjects. After single intravenously administration of 250, 500 and 1000 mg mildronate, the elimination half-life (t1/2) were (5.56 ± 1.55), (6.46 ± 1.07) and (6.55 ± 1.17) h, respectively. The Student–Newman–Keuls test results showed that peak plasma concentration (Cmax) and the area under the plasma concentration versus time curve from time 0 to 24 h (AUC0–24) were both linearly related to dose. The pharmacokinetics of mildronate fitted the linear dynamic feature over the dose range studied. The essential pharmacokinetic parameters of multidoses administration intravenously (500 mg, b.i.d) were as follows: t1/2 was (15.34 ± 3.14) h; Cmax was (25.50 ± 3.63) μg/mL; AUC0–24 was (58.56 ± 5.57) mg h/L. The t1/2 and AUC of multidoses administration intravenously were different from those of single-dose administration significantly. These findings suggested that accumulation of mildronate in plasma occurred.  相似文献   

9.
A simple sensitive and robust method for simultaneous determination of citalopram and desmethylcitalopram was developed using liquid chromatography tandem mass spectrometry (LC–MS/MS). A 200 μL aliquot of plasma sample was employed and deproteinized with methanol and desipramine was used as the internal standard. After vortex mixing and centrifugation, the supernatant was diluted with water (1:1, v/v) and then directly injected to analysis. Analytes were separated by a Zorbax XDB C18 column with the mobile phase composed of acetonitrile and water (30:70, v/v) with 0.25% formic acid and monitored in MRM mode using a positive electrospray source with tandem mass spectrometry detection. The total run time was 3.5 min. The dynamic range was 0.2–100 ng/mL for citalopram and 0.25–50 ng/mL for desmethylcitalopram, respectively. Compared to the best existing literatures for plasma samples, the same LOQ for CIT (0.5 ng/mL) and lower LOQ for DCIT (0.25 vs 5 ng/mL) were reached, and less sample preparation steps and runtime (3.5 vs 10 min) were taken for our method. Accuracy and precision was lower than 8% and lower than 11.5% for either target. Validation results and its application to the analysis of plasma samples after oral administration of citalopram in healthy Chinese volunteers demonstrated the method was applicable to pharmacokinetic studies.  相似文献   

10.
Flavanoid kaempferol is mainly present as glucuronides and sulfates in rat plasma, and small amounts of the intact aglycone are also detected. In the this study, a rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method (HPLC–MS/MS) was developed and validated for determination of kaempferol and its major metabolite glucuronidated kaempferol in rat plasma. A liquid–liquid extraction with acetic ether was involved for the extraction of kaempferol and internal standard. Analytes were separated on a C18 column (150 mm × 2.1 mm, 4.5 μm, Waters Corp.) with isocratic elution at a flow-rate of 0.3 ml min−1. The mobile phase was consisted of 0.5% formic acid and acetonitrile (50:50, v/v). The Quattro Premier HPLC–MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. The method was validated according to the FDA guidelines for validation of bioanalytical method. The validated method was successfully applied to the study of the pharmacokinetics in rats after oral administration of kaempferol with different doses.  相似文献   

11.
The effect of-tocopherol (T) on partitioning and fluidity changes occurring in phospholipid liposomes have been investigated by monitoring the X-band ESR spectrum of the high resolution amphiphilic spin probe perdeutero-di-t-butyl nitroxide (PDDTBN), which partitions in the lipid and water phase of liposomes, showing all the three resonances from each phase well resolved.  相似文献   

12.
Endogenous ethanolamides (fatty acid amides), including arachidonyl ethanolamide (anandamide, AEA), oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA), are substrates of fatty acid amide hydrolase (FAAH). FAAH may play an important role for pain, anxiety/depression, and metabolic disorders. Ethanolamides are considered to be potential pharmacodynamic biomarkers to determine target engagement for FAAH inhibition by novel pharmaceutical agents. A highly selective, sensitive, and high-throughput liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous quantitation of AEA, OEA, and PEA in human plasma. The method employed D4-AEA, D4-OEA, and 13C2-PEA as “surrogate analytes” to establish the concentration–mass response relationship, i.e. a regression equation. The concentrations of AEA, OEA, and PEA were calculated based on the regression equations derived from the surrogate analytes. This approach made it possible to prepare calibration standard and quality control (QC) samples in plasma devoid of interferences from the endogenous analytes. The analytical methodology required 150 μL of human plasma that was processed via liquid–liquid extraction (LLE) using a 96-well plate format. Chromatographic separation was achieved with a reversed-phase high performance liquid chromatography (HPLC) column using gradient elution, and the run time was 3 min. The method was fully validated and it demonstrated acceptable accuracy, precision, linearity, and specificity. The lower limit of quantitation (LLOQ) was 0.1/0.5/0.5 ng/mL for AEA/OEA/PEA, which was sensitive enough to capture the basal plasma levels in healthy subjects. Bench-top stability in plasma, freeze–thaw stability in plasma, frozen long-term stability in plasma, autosampler stability, and stock solution stability all met acceptance criteria (%Bias within ±12.0%). Characterization of stability in purchased/aged blood indicated that ethanolamides are subject to degradation mediated by intracellular membrane-bound FAAH, which has been shown to be inhibited by phenylmethylsulfonyl fluoride (PMSF). In the presence of PMSF, ethanolamide levels increased slightly over time, suggesting that blood cells release ethanolamides into plasma. Whole blood stability conducted in fresh blood immediately following collection revealed that there was significant elevation of ethanolamide concentrations (∼1.3–2.0-fold on ice and ∼1.5–3.0-fold at room temperature by 2 h), indicating that de novo synthesis and release from blood cells were the predominant factors affecting ethanolamide concentrations ex vivo. Accordingly, conditions that ensured rapid separation of plasma from blood cells and consistency in the blood harvesting procedures were established and implemented for clinical studies to minimize the ex vivo elevation of plasma ethanolamide concentrations. The variability (intra-subject and inter-subject) of plasma ethanolamide levels was evaluated in healthy subjects during a Phase 0 study (no drug administration) that simulated the design of single-ascending dose and multiple-ascending dose clinical trials in terms of sample collection time points, population, food, and activity. The data indicated there was relatively large inter- and intra-subject variation in plasma ethanolamide concentrations. In addition, apparent variations due to time of day and/or food effects were also revealed. Understanding the variability of ethanolamide levels in humans is very important for study design and data interpretation when changes in ethanolamide levels are used as target engagement biomarkers in clinical trials.  相似文献   

13.
Quantification of diarrhetic shellfish poisoning (DSP) toxins (okadaic acid analogues), and other lipophilic toxins in single-cell isolates of the dinoflagellates Dinophysis fortii, D. acuminata, D. mitra, D. norvegica, D. tripos, D. infundibulus and D. rotundata, collected in coastal waters Hokkaido, Japan in 2005, was carried out by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Okadaic acid (OA), dinophysistoxin-1 (DTX1), 7-O-palmitoyldinophysistoxin-1 (DTX3), pectenotoxin-1 (PTX1), pectenotoxin-11 (PTX11), pectenotoxin-2 (PTX2), pectenotoxin-6 (PTX6), pectenotoxin-2 seco-acid (PTX2sa), yessotoxin (YTX) and 45-hydroxyyessotoxin (45-OHYTX) were quantified by LC–MS/MS. PTX2 was the dominant toxin in D. acuminata, D. norvegica and D. infundibulus whereas both DTX1 and PTX2 were the principal toxins in D. fortii. None of the toxins were detected in D. mitra, D. rotundata and D. tripos. These results suggest that D. fortii is the most important species responsible for DSP contamination of bivalves in Hokkaido. This is the first finding of PTX2 in D. infundibulus, and confirms the presence of PTX2 in Japanese D. acuminata and D. norvegica collected from natural seawater.  相似文献   

14.
Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC–MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC–MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC–MS, and iTRAQ®–LC–MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27 ± 5.22, 21.18 ± 10.94, and 18.34 ± 14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39 ± 5.35, 6.23 ± 3.84, and 35.37 ± 29.42. Both GC–MS and iTRAQ®–LC–MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.  相似文献   

15.
Identification of free radicals was performed for the reaction mixtures of autoxidized 1,2-dilinoleoylphosphatidylcholine (DLPC) with ferrous ions (or DLPC hydroperoxide with ferrous ions) and of DLPC with soybean lipoxygenase using electron spin resonance (ESR), high performance liquid chromatography (HPLC)–ESR and HPLC–ESR–mass spectrometry (MS) combined use of spin trapping technique. ESR measurements of the reaction mixtures showed prominent signals with hyperfine coupling constants (aN=1.58?mT and aHβ=0.26?mT). Outstanding peaks with almost same retention times (autoxidized DLPC, 36.9?min; DLPC hydroperoxide, 35.0?min; DLPC with soybean lipoxygenase, 37.1?min) were observed on the elution profile of the HPLC–ESR analyses of the reaction mixtures. HPLC–ESR–MS analyses of the reaction mixtures gave two ions at m/z 266 and 179, suggesting that 4-POBN/pentyl radical adduct forms in these reaction mixtures.  相似文献   

16.
A highly sensitive, specific and evaporation free SPE extraction, LC–MS/MS method has been developed for the estimation of trospium in human plasma using trospium-d8 as an internal standard (IS). The analyte was separated using isocratic mobile phase on reverse phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+] cations, m/z 392–164 for trospium and m/z 400–172 for the IS. The total run time was 3.50 min and the elution of trospium and trospium-d8 (IS) occurred at 2.8 min. The developed method was validated in human plasma with a lower limit of quantification of 0.05 ng/mL. A linear response function was established for the range of concentrations 0.05–10 ng/mL (r > 0.998) for trospium in human plasma. The intra- and inter-day precision values for trospium met the acceptance as per FDA guidelines. Trospium was stable in the battery of stability studies viz., bench-top, auto-sampler, dry extracts and freeze/thaw cycles. The developed assay method was applied to an oral pharmacokinetic study in humans.  相似文献   

17.
The isoleucine conjugate of 12-oxo-phytodienoic acid (OPDA-Ile), a new member of the jasmonate family, was recently identified in Arabidopsis thaliana and might be a signaling molecule in plants. However, the biosynthesis and function of OPDA-Ile remains elusive. This study reports an in vitro enzymatic method for synthesizing OPDA-Ile, which is catalyzed by reactions of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) using isoleucine conjugates of α -linolenic acid (LA-Ile) as the substrate. A. thaliana fed LA-Ile exhibited a marked increase in the OPDA-Ile concentration. LA-Ile was also detected in A. thaliana. Furthermore, stable isotope labelled LA-Ile was incorporated into OPDA-Ile. Thus, OPDA-Ile is biosynthesized via the cyclization of LA-Ile in A. thaliana.  相似文献   

18.
19.
The ESR signal of NO bound to hemoglobin was detected during the ischemia-reperfusion of myocardium with low temperature ESR technique, and the synergic effects of NO and oxygen free radicals in the injury of the process were studied with this technique. Oxygen free radicals and NO bound to β-subunit of hemoglobin (β-NO complex) could be detected simultaneously in the ischemia-reperfused myocardium. Those signals could not be detected from the normal myocardium even in the presence of L-arginme. However, those signals could be detected and were dose-dependent with L-arginine in the ischemia-reperfused myocardiums and the signal could be suppressed with the inhibitor of NO synthetase, NG-nitro-L-arginine methylester (NAME). Measurement of the activities of lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary artery effluent of ischemia-reperfused heart showed that L-arginine at lower concentration (<1 mmol/L) could protect the heart from the ischemia-reperfusion injury but at higher con  相似文献   

20.
In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC–ESI–MS/MS to comprehensively identify these peptides. However, there are many parameters for LC–ESI–MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC–ESI–MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC–ESI–MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC–ESI–MS/MS systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号