首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients.  相似文献   

2.
Animals in many aquatic ecosystems must cope with changing environmental parameters, such as temperature, oxygen availability or pH. We have investigated the molecular responses to acidification in the gills and body of zebrafish (Danio rerio) by means of quantitative real-time PCR. Expression levels of typical stress genes and genes for antioxidant defense were strongly enhanced in gills, and to lesser extents in the body, suggesting that acidification leads to oxidative stress. Surprisingly, the globins were found to be among the most prominent stress–responsive proteins in our study. Myoglobin showed the strongest response of all investigated genes in the gills, as confirmed by Western blotting. These findings agree with the role of globins in oxidative energy metabolism, but may also hint at a specific function in antioxidative defense.  相似文献   

3.
Roy M  Sen S  Chakraborti AS 《Life sciences》2008,82(21-22):1102-1110
Glycation-modified hemoglobin in diabetes mellitus has been suggested to be a source of enhanced catalytic iron and free radicals causing pathological complications. The present study aims to verify this idea in experimental diabetes. Pelargonidin, an anthocyanidin, has been tested for its antidiabetic potential with emphasis on its role against pathological oxidative stress including hemoglobin-mediated free radical reactions. Male wistar rats were grouped as normal control, streptozotocin-induced diabetic control, normal treated with pelargonidin and diabetic treated with pelargonidin. Pelargonidin-treated rats received one time i.p injection of the flavonoid (3 mg/kg bodyweight). Biochemical parameters were assayed in blood samples of different groups of rats. Liver was used for histological examinations. Pelargonidin treatment normalized elevated blood glucose levels and improved serum insulin levels in diabetic rats. Glucose tolerance test appeared normal after treatment. Decreased serum levels of SOD and catalase, and increased levels of malondialdehyde and fructosamine in diabetic rats were reverted to their respective normal values after pelargonidin administration. Extents of hemoglobin glycation, hemoglobin-mediated iron release, iron-mediated free radical reactions and carbonyl formation in hemoglobin were pronounced in diabetic rats, indicating association between hemoglobin glycation and oxidative stress in diabetes. Pelargonidin counteracts hemoglobin glycation, iron release from the heme protein and iron-mediated oxidative damages, confirming glycated hemoglobin-associated oxidative stress in diabetes.  相似文献   

4.
Reducing sugars can react with the free amino groups of proteins to form a heterogeneous group of compounds known as advanced glycation endproducts (AGEs) or Maillard reaction products. The objective of this investigation was to monitor the nonenzymatic glycation of DNA nucleosides and to characterize the formation of nucleoside AGEs using capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), UV fluorescence spectroscopy, and mass spectrometry. Deoxyguanosine, deoxyadenosine, deoxythymidine, and deoxycytidine were used as the model nucleosides and were incubated over time with glucose, galactose, or glyceraldehyde. Under increasing concentrations and time, deoxyguanosine exhibited the highest rate of glycation with glyceraldehyde. Deoxyadenosine and deoxycytidine exhibited comparable reactivity with glyceraldehyde and no appreciable reactivity with galactose or glucose. No reactivity was observed between deoxythymidine and the sugars. A combination of CE, HPLC, UV fluorescence spectroscopy, and mass spectrometry provided a convenient method for characterizing nucleoside AGEs and for monitoring the physical factors that influence the formation of sugar adducts of DNA nucleosides.  相似文献   

5.
Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway.  相似文献   

6.
    
Production of minute concentrations of superoxide (O2) and nitrogen monoxide (nitric oxide, NO) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance—a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2, hydrogen peroxide (H2O2), and NO. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2, H2O2, NO, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.  相似文献   

7.
8.
    
  相似文献   

9.
Hyperglycemia-induced oxidative stress in diabetic complications   总被引:8,自引:3,他引:8  
Reactive oxygen species are increased by hyperglycemia. Hyperglycemia, which occurs during diabetes (both type 1 and type 2) and, to a lesser extent, during insulin resistance, causes oxidative stress. Free fatty acids, which may be elevated during inadequate glycemic control, may also be contributory. In this review, we will discuss the role of oxidative stress in diabetic complications. Oxidative stress may be important in diabetes, not just because of its role in the development of complications, but because persistent hyperglycemia, secondary to insulin resistance, may induce oxidative stress and contribute to beta cell destruction in type 2 diabetes. The focus of this review will be on the role of oxidative stress in the etiology of diabetic complications.  相似文献   

10.
The eye is a unique organ because of its constant exposure to radiation, atmospheric oxygen, environmental chemicals and physical abrasion. That oxidative stress mechanisms in ocular tissues have been hypothesized to play a role in diseases such as glaucoma, cataract, uveitis, retrolental fibroplasias, age-related macular degeneration and various forms of retinopathy provides an opportunity for new approaches to their prevention and treatment, In the anterior uvea, both H2O2 and synthetic peroxides exert pharmacological/toxicological actions tissues of the anterior uvea especially on the sympathetic nerves and smooth muscles of the iris–ciliary bodies of several mammalian species. Effects produced by peroxides require the presence of trace amounts of extracellular calcium and the functional integrity of mitochondrial calcium stores. Arachidonic acid metabolites appear to be involved in both the excitatory action of peroxides on sympathetic neurotransmission and their inhibitory effect on contractility of the iris smooth muscle to muscarinic receptor activation. In addition to the peroxides, isoprostanes (products of free radical catalyzed peroxidation of arachidonic acid independent of the cyclo-oxygenase enzyme) can also alter sympathetic neurotransmission in anterior uveal tissues. In the retina, both H2O2 and synthetic peroxides produced an inhibitory action on potassium depolarization induced release of [3H] d-aspartate, in vitro and on the endogenous glutamate and glycine concentrations in vivo. Effects caused by peroxides in the retina are mediated, at least in part, by second messengers such as nitric oxide, prostaglandins and isoprostanes. The ability of H2O2 to alter the integrity of neurotransmitter pools from sympathetic nerves in the anterior uvea and glutaminergic nerves in the retina could underlie its role in the etiology of glaucoma.  相似文献   

11.
    
Stress is an unavoidable part of human life that affects a majority of people: In 2018, 55% of Americans reported experiencing stress (Gallup Global Emotions, 2019). Various factors contribute to the emergence of nervous stress among individuals, including environmental, physical, and psychological stimuli. Physical and psychological issues arise as a result of stress, which is the subject of our research study, giving it significant practical value. Here, we have tested the possible correlation between increase in oxidation species and severe psychological issues at a community level. To understand any possible connections between these two parameters, tests were conducted on 200 rats that were divided into three general groups based on the duration of stress exposure. Each group was further divided into five smaller groups with 10–20 rats. Treatments were setup with or without vitamin E with periods of stress immobilization. Samples were then collected to conduct necessary analyses from control, experimental, and treatment groups. Immobilization stress types, i.e., acute and chronic stress, caused noticeably different physiological changes, especially with respect to nature and severity of response. Chronic stress induced different responses depending on the exposure period as well. Furthermore, vitamin E appeared to have a protective role due to its antioxidant nature, which highlights the need for investigations on oxidative stress-related disease treatment and prevention.  相似文献   

12.
    
Oxidative stress in the male germ line is known to be a key factor in both the etiology of male infertility and the high levels of DNA damage encountered in human spermatozoa. Because the latter has been associated with a variety of adverse clinical outcomes, including miscarriage and developmental abnormalities in the offspring, the mechanisms that spermatozoa use to defend themselves against oxidative stress are of great interest. In this context, the male germ line expresses three unique forms of thioredoxin, known as thioredoxin domain-containing proteins (Txndc2, Txndc3, and Txndc8). Two of these proteins, Txndc2 and Txndc3, retain association with the spermatozoa after spermiation and potentially play an important role in regulating the redox status of the mature gamete. To address this area, we have functionally deleted the sperm-specific thioredoxins from the male germ line of mice by either exon deletion (Txndc2) or mutation of the bioactive cysteines (Txndc3). The combined inactivation of these Txndc isoforms did not have an overall impact on spermatogenesis, epididymal sperm maturation, or fertility. However, Txndc deficiency in spermatozoa did lead to age-dependent changes in these cells as reflected by accelerated motility loss, high rates of DNA damage, increases in reactive oxygen species generation, enhanced formation of lipid aldehyde–protein adducts, and impaired protamination of the sperm chromatin. These results suggest that although there is considerable redundancy in the systems employed by spermatozoa to defend themselves against oxidative stress, the sperm-specific thioredoxins, Txndc2 and Txndc3, are critically important in protecting these cells against the increases in oxidative stress associated with paternal age.  相似文献   

13.
14.
Glycoxidation and lipoxidation in atherogenesis   总被引:20,自引:0,他引:20  
Atherosclerosis may be viewed as an age-related disease initiated by nonenzymatic, chemical reactions in a biological system. The peroxidation of lipids in lipoproteins in the vascular wall leads to local production of reactive carbonyl species that mediate recruitment of macrophages, cellular activation and proliferation, and chemical modification of vascular proteins by advanced lipoxidation end-products (ALEs). The ALEs and their precursors affect the structure and function of the vascular wall, setting the stage for atherogenesis. The increased risk for atherosclerosis in diabetes may result from additional carbonyl production from carbohydrates and additional chemical modification of proteins by advanced glycation end-products (AGEs). Failure to maintain homeostasis and the increase in oxidizable substrate (lipid) alone, rather than oxidative stress, is the likely source of the increase in reactive carbonyl precursors and the resultant ALEs and AGEs in atherosclerosis. Nucleophilic AGE-inhibitors, such as aminoguanidine and pyridoxamine, which trap reactive carbonyls and inhibit the formation of AGEs in diabetes, also trap bioactive lipids and precursors of ALEs in atherosclerosis. These drugs should be effective in retarding the development of atherosclerosis, even in nondiabetic patients.  相似文献   

15.
At present 15 to 20 million people are estimated to be infected with pathogenic trypanosome parasites worldwide, mainly in developing countries. There are a number of factors that affect the severity of trypanosomiasis, including the nutritional status of the host. However, the relationship between micronutrient levels and trypanosomiasis outcome has yet to be reported in detail. Here, we demonstrate that the inhibition of α-tocopherol transfer protein, a determinant of the vitamin E concentration in host circulation, confers resistance to Trypanosoma congolense infection, evidently owing to oxidative damage to parasite DNA. These results suggest that transient inhibition of α-tocopherol transfer gene activity could possibly be exploited as a strategy for both the prevention and the treatment of trypanosomiasis.  相似文献   

16.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

17.
Reflectance spectroscopy was utilized to monitor the oxidation states of myoglobin (Mb) in isolated, buffer-perfused rat hearts. Hearts were subjected to 30 min global, no-flow ischemia, followed by reperfusion under anoxic conditions. The addition of Na2S to the buffer at reperfusion permitted the detection of ferryl myoglobin (MbIV) as its sulfmyoglobin derivative. The accumulation of MbIV was prevented by addition of ascorbic acid (1 mM), ergothioneine (2mM), or desferal (1mM) to the buffer prior to ischemia. Ascorbate and other agents have been previously shown to serve as one-electron reductants of MbIV. We propose that during the early phases of ischemia, deoxymyoglobin is oxidized to MbIV by residual H2O2. It also seems reasonable that the peroxidative activity of Mb(IV), during oxygenated reperfusion, might lead to cellular damage if this hypervalent form of Mb is not reduced.  相似文献   

18.
Two trials were conducted to evaluate the effects of short-term administration of corticosterone (CORT) on the induction of oxidative injury in broiler chickens (Gallus gallus domesticus). Twelve broiler chickens of 30 and of 40 days of age were respectively employed in Trial 1 and 2. Half of the chickens were administered subcutaneously with CORT (4 mg/kg body weight [BW] in corn oil), while another half served as controls (corn oil) in each trail. In Trial 1, a blood sample was obtained from each chicken immediately before administration and at 1 and 3 h after injection. In Trial 2, the liver and heart were obtained after 3 h of CORT exposure. Short-term administration of CORT resulted in enhanced proteolysis and gluconeogenesis. There were no obvious changes in lipid peroxidation status of the heart and liver, whereas a decrease in lipid peroxidation in the plasma was observed after acute CORT exposure. The significantly increased plasma nonenzymatic antioxidants (uric acid [UA] and total antioxidant capacity) in concert with the enhanced enzymatic antioxidant activity (SOD in heart) during short-term CORT administration indicate preventive changes to counteract the oxidative injury, and these may be tissue specific.  相似文献   

19.
Free trans-astaxanthin accumulated in the alga Chlorococcum sp. was markedly enhanced from 3.664 mg g−1 cell dry weight to 5.724 mg g−1 cell dry weight when the culture was supplemented with hydrogen peroxide (0.1 mM) under mixotrophic conditions of growth. After saponification, a total of 7.086 mg astaxanthin per g cell dry weight was achieved. Similarly, in heterotrophic cultures, the total astaxanthin content was increased from 1.034 mg g−1 cell dry weight without H2O2 to 1.782 mg g−1 cell dry weight with 0.1mM H2O2. Results indicate that hydrogen peroxide effectively induces the formation of free trans-astaxanthin in Chlorococcum sp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号