首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ECTO-NOX (because of their cell surface location) proteins comprise a family of NAD(P)H oxidases of plants and animals that exhibit both oxidative and protein disulfide isomerase-like activities. The two biochemical activities, hydroquinone [NAD(P)H] oxidation and protein disulfide--thiol interchange alternate, a property unprecedented in the biochemical literature. A tumor-associated ECTO-NOX (tNOX) is cancer-specific and drug-responsive. The constitutive ECTO-NOX (CNOX) is ubiquitous and refractory to drugs. The physiological substrate for the oxidative activity appears to be hydroquinones of the plasma membrane such as reduced coenzyme Q10. ECTO-NOX proteins are growth-related and drive cell enlargement. Also indicated are roles in aging and in neurodegenerative diseases. The regular pattern of oscillations appears to be related to alpha-helix-beta-structure transitions and serves biochemical core oscillator of the cellular biological clock. Period length is independent of temperature (temperature compensated) and synchrony is achieved through entrainment.  相似文献   

2.
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type.  相似文献   

3.
This report describes a novel ECTO-NOX protein with an oscillating activity having a period length of ca. 26 min encountered with buffy coat fractions and sera of aged individuals (70–100 years) that generates superoxide as measured by the reduction of ferricytochrome c. The oscillating, age-related reduction of ferricytochrome c is sensitive to superoxide dismutase, is inhibited by coenzyme Q and is reduced or absent from sera of younger individuals (20–40 years). An oscillating activity with a regular period length is a defining characteristic of ECTO-NOX proteins (a group of cell surface oxidases with enzymatic activities that oscillate). The period length of ca. 26 min is longer than the period length of 24 min for the usual constitutive (CNOX) ECTO-NOX proteins of the cell surface and sera which neither generate superoxide nor reduce ferricytochrome c. The aging-related ECTO-NOX protein (arNOX) provides a mechanism to transmit cell surface oxidative changes to surrounding cells and circulating lipoproteins potentially important to atherogenesis. Additionally, the findings provide a rational basis for the use of dietary coenzyme Q to retard aging-related arterial lesions.  相似文献   

4.
Our laboratories have described a novel class of ectoproteins at the cell surface with both NADH or hydroquinone oxidase (NOX) and protein disulfide-thiol interchange activities (ECTO-NOX proteins). The two activities exhibited by these proteins alternate to generate characteristic patterns of oscillations where the period length is independent of temperature. The period length for the constitutive ECTO-NOX is 24 min. Here we describe a distinctive age-related ECTO-NOX (arNOX) whose activity is blocked by coenzyme Q10. arNOX occurs exclusively in aged cells and tissues. The period length of the oscillations is 26 min. Rather than reducing 1/2 O2 to H2O, electrons are transferred to O2 to form superoxide. Superoxide formation was demonstrated by superoxide dismutase-sensitive reduction of ferricytochrome c and by reduction of a superoxide-specific tetrazolium salt. Quinone inhibition was given by coenzymes Q8, 9 and Q10 but not by Q0, Q2, Q4, Q6 or 7. The arNOX provides a mechanism to propagate reactive oxygen species generated at the cell surface to surrounding cells and circulating lipoproteins of importance to atherogenesis. Inhibition of arNOX by dietary coenzyme Q10 provides a rational basis for dietary coenzyme 10 use to retard aging-related arterial lesions.  相似文献   

5.
Both recombinant full-length mouse prion protein expressed in Escherichia coli and native prion protein (PrPsc) from mouse brain exhibited NADH oxidase and protein disulfide-thiol interchange activities similar to those formerly thought to be properties exclusive to the growth-related, cell surface ECTO-NOX proteins. The two activities exhibited the complex 2+3 pattern of oscillations characteristic of ECTO-NOX proteins where the two activities alternate to generate a period length of 24 min. The oscillations were augmented by copper and diminished by addition of the copper chelator bathocuproene. That the activity might be attributable to a contaminating protein was ruled out by experiments where the purified recombinant prion-containing extracts were resolved by SDS-PAGE and the activity was restricted to a single band corresponding to the predicted Mr of the recombinant prion as verified by Western blot analyses.  相似文献   

6.
Our work has identified a cancer-specific, cell surface and growth-related quinol oxidase with both NADH oxidase and protein disulfide-thiol interchange activities, a member of the ECTO-NOX protein family designated tNOX. We provide evidence for tNOX as an alternative drug target to COX-2 to explain the anticancer activity of COX inhibitors. Non-steroidal anti-inflammatory drugs (NSAIDS), piroxicam, aspirin, ibuprofen, naproxen and celecoxib all specifically inhibited tNOX activity of HeLa (human cervical carcinoma) and BT-20 (human mammary carcinoma) cells (IC50 in the nanomolar range) without effect on ECTO-NOX activities of non-cancer MCF-10A mammary epithelial cells. With cancer cells, rofecoxib was less effective and two NSAIDS selective for COX-1 were without effect in inhibiting NOX activity. The IC50 for inhibition of tNOX activity of HeLa cells and the IC50 for inhibition of growth of HeLa cells in culture were closely correlated. The findings provide evidence for a new drug target to account for anticancer effects of NSAIDS that occur independent of COX-2.  相似文献   

7.
ECTO-NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit time-keeping and prion-like properties. A bacterially expressed truncated recombinant 46 kDa ENOX2 with full ENOX2 activity bound ca 2 moles copper and 2 moles of zinc per mole of protein. Unfolding of the protein in trifluoroacetic acid in the presence of the copper chelator bathocuproine resulted in reversible loss of both enzymatic activities and of a characteristic pattern in the Amide I to Amide II ratios determined by FTIR with restoration by added copper. The H546-V-H together with His 562 form one copper binding site and H582 represents a second copper site as determined from site-directed mutagenesis. Bound copper emerges as having an essential role in ENOX2 both for enzymatic activity and for the structural changes that underly the periodic alternations in activity that define the time-keeping cycle of the protein.  相似文献   

8.
Morré DJ  Chueh PJ  Pletcher J  Tang X  Wu LY  Morré DM 《Biochemistry》2002,41(40):11941-11945
NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.  相似文献   

9.
Araucaria angustifolia (Bert.) O. Kuntze is a species critically endangered of extinction and its development and propagation is strongly affected by abiotic stress. We have previously shown the activation of uncoupling protein in A. angustifolia embryogenic stem cells subjected to cold stress. Now, we have furthered those studies by exposing these cells to cold stress (4?±?1?°C for either 24 or 48?h) and evaluating parameters associated with oxidative stress and alterations in the cellular and mitochondrial responses. Cold stress affect the H2O2 levels and lipid peroxidation increased after both stress condition, an effect associated with the decrease in the activities of peroxidases, catalase and ascorbate/dehydroascorbate ratio. On the other hand, the activities of ascorbate peroxidase, monodehydroascorbate and dehydroascorbate reductases increased as an indication of adaptation. Another important impact of cold stress conditions was the decrease of external alternative NAD(P)H dehydrogenases activity and the increase of mitochondrial mass. These results show that cold stress induces oxidative stress in A. angustifolia embryogenic cells, which results in activation of the glutathione-ascorbate cycle as a compensation for the decrease in the activities of catalase, peroxidases, and external NAD(P)H dehydrogenases. Our results contribute to the understanding of the pathways that gymnosperms employ to overcome oxidative stress, which must be explored in order to improve the methods of conservation and propagation of A. angustifolia.  相似文献   

10.
Brain and liver mitochondria isolated by a discontinuous Percoll gradient show an oxidized redox environment, which is reflected by low GSH levels and high GSSG levels and significant glutathionylation of mitochondrial proteins as well as by low NAD(P)H/NAD(P) values. The redox potential of brain mitochondria isolated by a discontinuous Percoll gradient method was calculated to be -171 mV based on GSH and GSSG concentrations. Immunoblotting and LC/MS/MS analysis revealed that succinyl-CoA transferase and ATP synthase (F(1) complex, α-subunit) were extensively glutathionylated; S-glutathionylation of these proteins resulted in a substantial decrease of activity. Supplementation of mitochondria with complex I or complex II respiratory substrates (malate/glutamate or succinate, respectively) increased NADH and NADPH levels, resulting in the restoration of GSH levels through reduction of GSSG and deglutathionylation of mitochondrial proteins. Under these conditions, the redox potential of brain mitochondria was calculated to be -291 mV. Supplementation of mitochondria with respiratory substrates prevented GSSG formation and, consequently, ATP synthase glutathionylation in response to H(2)O(2) challenges. ATP synthase appears to be the major mitochondrial protein that becomes glutathionylated under oxidative stress conditions. Glutathionylation of mitochondrial proteins is a major consequence of oxidative stress, and respiratory substrates are key regulators of mitochondrial redox status (as reflected by thiol/disulfide exchange) by maintaining mitochondrial NADPH levels.  相似文献   

11.
Cell surface ECTO-NOX proteins exhibit a clock-related, temperature-independent entrainable pattern of periodic (24 min) oscillations in the rate of oxidation of NAD(P)H. Aqueous solutions of copper salts also oxidize NAD(P)H with a similar temperature-independent pattern. For both, five maxima are observed, two of which are separated by 6 min and the remaining three are separated by 4.5 min. In D2O, the pattern is retained but the period length is proportionately increased to 30 min in direct relationship to the 30 h circadian day observed with D2O-grown organisms. With copper solutions, periodic changes in redox potential correlate precisely with the periodic changes in the rates of NAD(P)H oxidation. Consequently, the local environment of the Cu2+ ion in copper chloride solutions was investigated by X-ray absorption spectroscopy. Detailed extended X-ray absorption fine structure (EXAFS) analyses revealed a pattern of oscillations closely resembling those of the copper-catalyzed oxidation of NADH. With CuCl2 in D2O, a pattern with a period length of 30 min was observed. The findings suggest a regular pattern of distortion in the axial and/or equatorial oxygen atoms of the coordinated water molecules which correlate with redox potential changes sufficient to oxidize NADH. A metastable equilibrium condition in the ratio of ortho to para nuclear spin orientation of the water associated hydrogen atoms would be kinetically consistent with a 24-30 min timeframe. The temperature independence of the biological clock can thus be understood as the consequence of a physical rather than a chemical basis for the timing events.  相似文献   

12.
Unwanted enzyme side reactions and spontaneous decomposition of metabolites can lead to a build-up of compounds that compete with natural enzyme substrates and must be dealt with for efficient metabolism. It has recently been realized that there are enzymes that process such compounds, formulating the concept of metabolite repair. NADH and NADPH are vital cellular redox cofactors but can form non-functional hydrates (named NAD(P)HX) spontaneously or enzymatically that compete with enzymes dependent on NAD(P)H, impairing normal enzyme function. Here we report on the functional characterization of components of a potential NAD(P)H repair pathway in plants comprising a stereospecific dehydratase (NNRD) and an epimerase (NNRE), the latter being fused to a vitamin B6 salvage enzyme. Through the use of the recombinant proteins, we show that the ATP-dependent NNRD and NNRE act concomitantly to restore NAD(P)HX to NAD(P)H. NNRD behaves as a tetramer and NNRE as a dimer, but the proteins do not physically interact. In vivo fluorescence analysis demonstrates that the proteins are localized to mitochondria and/or plastids, implicating these as the key organelles where this repair is required. Expression analysis indicates that whereas NNRE is present ubiquitously, NNRD is restricted to seeds but appears to be dispensable during the normal Arabidopsis life cycle.  相似文献   

13.
Several yeasts, as well as aerobic and anaerobic bacteria catalyze the reduction of NAD and NADP in the presence of reduced methylviologen. The rates are usually much higher than those of reductions of unsaturated substrates by the organisms in cofermentations with carbohydrates. Since methylviologen can be continuously reduced at the cathode of an electrochemical cell it acts in catalytic amounts as a regenerable electron donor. Such systems may be superior to that with glucose as electron donor, because the NAD(P)H can be used exclusively for the reduction of the unsaturated substrate. The rate of the NAD(P)H formation depends very much on the organism and for the same organism on the growth procedure, the growth medium, the pretreatment of the cells, the pH, the buffer as well as on the ionic strength. Cells of Candida utilis which were frozen and thawed several times were superior to cells freshly harvested. Crude extracts revealed the best activities.Clostridia show the highest activities (up to 15 U per mg protein in the crude extract) and are suitable catalysts for the preparation of [4S-2H]NADH and [4S-2H]NADPH using 2H2O-buffer in an electrochemical cell.The combinations of Alcaligenes eutrophus or Clostridium kluyveri and Candida utilis extracts in the presence of methylviologen are effective systems to reduce hydroxyacetone with hydrogen gas as electron donor or in an electrochemical cell. In this combination of microorganisms NADH is formed mainly by A. eutrophus or C. kluyveri and consumed for the reduction of hydroxyacetone by a reductase present in Candida utilis. The productivity numbers of such combinations are 10–30 times higher than those of yeasts alone.NAD(P)H regeneration, methylviologen-dependent NAD(P)H formation, deuterated NAD(P)H, Clostridia, yeast, bioreduction  相似文献   

14.
Plant mitochondria contain non-phosphorylating NAD(P)H dehydrogenases (DHs) that are not found in animal mitochondria. The physiological function, substrate specificity, and location of enzymes within this family have yet to be conclusively determined. We have linked genome sequence information to protein and biochemical data to identify that At1g07180 (SwissProt Q8GWA1) from the Arabidopsis Genome Initiative database encodes AtNDI1, an internal NAD(P)H DH in Arabidopsis mitochondria. Three lines of evidence are presented: (a). The predicted protein sequence of AtNDI1 has high homology with other designated NAD(P)H DHs from microorganisms, (b). the capacity for matrix NAD(P)H oxidation via the rotenone-insensitive pathway is significantly reduced in the Atndi1 mutant plant line, and (c). the in vitro translation product of AtNDI1 is imported into isolated mitochondria and located on the inside of the inner membrane.  相似文献   

15.
The two glutamate synthases, NAD(P)H- and ferredoxin-dependent, from the green leaves of tomato plants (Lycopersicon esculentum L. cv Hellfrucht frühstamm) differed in their chemical properties and catalytic behavior. Gel filtration of NAD(P)H enzyme gave an apparent molecular size of 158 kilodalton, whereas the ferredoxin enzyme molecular size was 141 kilodalton. Arrhenius plots of the activities of the two enzymes showed that the NAD(P)H enzyme had two activation energies; 109.6 and 70.5 kilojoule per mole; the transition temperature was 22°C. The ferredoxin enzyme however, had only one activation energy; 56.1 kilojoule per mole. The respective catalytic activity pH optima for the NAD(P)H- dependent and the ferredoxin dependent enzymes were around 7.3 and 7.8. In experiments to evaluate the effects of modulators aspartate enhanced the NAD(P)H-linked activity, with a Ka value of 0.25 millimolar, but strongly inhibited that of the ferredoxin-dependent glutamate synthase with a Ki of 0.1 millimolar. 3-Phosphoserine was another inhibitor of the ferredoxin dependent enzyme with a Ki value of 4.9 millimolar. 3-Phosphoglyceric acid was a potent inhibitor of the ferredoxin-dependent form, but hardly affected the NAD(P)H-dependent enzyme. The results are discussed and interpreted to propose different specific functions that these activities may have within the leaf tissue cell.  相似文献   

16.
Pea seeds (Pisum sativum L.) were germinated by soaking in distilled water or 5mM CdCl2 for 5 days. The relationships among Cd treatment, germination rate, embryonic axis growth, NAD(P)H levels and NAD(P)H oxidase activities in mitochondrial and peroxisomal fractions of cotyledons and embryonic axis were investigated. Heavy metal stress provoked a diminution in germination percent and embryonic axis growth, as compared to the control. A drastic disorder in reducing power was imposed after exposure to cadmium. Heavy metal caused a significant increase in the redox ratio of coenzymes. NADPH oxidase is considered to be oxidative stress-related enzymes. The NAD(P)H oxidase activities were strongly stimulated after Cd exposure. The changes in redox and oxidative properties are discussed in relation to the delay in seed germination and embryonic axis growth.  相似文献   

17.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

18.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

19.
Chlamydia trachomatis is an obligate intracellular bacterium that alternates between two metabolically different developmental forms. We performed fluorescence lifetime imaging (FLIM) of the metabolic coenzymes, reduced nicotinamide adenine dinucleotides [NAD(P)H], by two-photon microscopy for separate analysis of host and pathogen metabolism during intracellular chlamydial infections. NAD(P)H autofluorescence was detected inside the chlamydial inclusion and showed enhanced signal intensity on the inclusion membrane as demonstrated by the co-localization with the 14-3-3β host cell protein. An increase of the fluorescence lifetime of protein-bound NAD(P)H [τ2-NAD(P)H] inside the chlamydial inclusion strongly correlated with enhanced metabolic activity of chlamydial reticulate bodies during the mid-phase of infection. Inhibition of host cell metabolism that resulted in aberrant intracellular chlamydial inclusion morphology completely abrogated the τ2-NAD(P)H increase inside the chlamydial inclusion. τ2-NAD(P)H also decreased inside chlamydial inclusions when the cells were treated with IFNγ reflecting the reduced metabolism of persistent chlamydiae. Furthermore, a significant increase in τ2-NAD(P)H and a decrease in the relative amount of free NAD(P)H inside the host cell nucleus indicated cellular starvation during intracellular chlamydial infection. Using FLIM analysis by two-photon microscopy we could visualize for the first time metabolic pathogen-host interactions during intracellular Chlamydia trachomatis infections with high spatial and temporal resolution in living cells. Our findings suggest that intracellular chlamydial metabolism is directly linked to cellular NAD(P)H signaling pathways that are involved in host cell survival and longevity.  相似文献   

20.
A family of cell surface and growth related proteins that oxidize both NADH and hydroquinones and carry out protein disulfide-thiol interchange (ECTO-NOX proteins) exhibits unique characteristics. The two activities they catalyze, hydroquinone or NADH oxidation and protein disulfide-thiol interchange, alternate in CNOX (the constitutive ECTO-NOX), to generate a regular period length of 24 min. For NADH or hydroquinone oxidation each period is defined by maxima that recur at intervals of 24 min. Here, we report that bound CuII is required to sustain the 24 min oscillation cycle of CNOX. CNOX preparations from plasma membranes of soybean, when unfolded in the presence of the copper chelator bathocuproine and refolded, lose activity. When refolded in the presence of copper, activity is restored. Unexpectedly, however, the released copper is capable of catalyzing NADH (or hydroquinone) oxidation in the absence of protein. Solvated CuII as the chloride or other salts alone is capable of catalyzing NADH oxidation and the oxidation rates oscillate with an overall period length of 24 min. With CuIICl2 the pattern consists of five maxima, two of which are separated by an interval of 6 min and three of which are separated by intervals of 4.5 min [6 min + 4 (4.5 min)]. The period length is independent of temperature and pH. The asymmetry of the oscillatory pattern is retained after solvation of the CuII salts in D2O but the overall period length is increased to 30 min. The findings suggest that the bound copper of CNOX and perhaps of ECTO-NOX proteins in general, is essential to maintain the structural changes that underlie the periodic alternations in activity that define the 24 min time-keeping cycle of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号