首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 - +N O 3 - were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration.  相似文献   

2.
The aim of this study was to investigate the influences of different stress models on the antioxidant status and lipid peroxidation (LPO) in erythrocytes of rats. Swiss-Albino female rats (3 months old) were used in this study. Rats were randomly divided into the following four groups; control group (C), cold stress group (CS), immobilization stress group (IS) and cold+immobilization stress group (CS+IS). Control group was kept in an animal laboratory (22 &#45 2°C). Rats in CS group were placed in cold room (5°C) for 15 min/day for 15 days. Rats in IS group were immobilized for 180 min/day for 15 days. Rats in CS+IS group were exposed to both cold and immobilization stresses for 15 days. At the end of experimental periods, the activities of glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and concentration of reduced glutathione (GSH) were measured. LPO was determined by measuring the contents of thiobarbituric acid-reactive substances (TBARS). Cu,Zn-SOD activity and TBARS concentration were increased after cold and immobilization stresses, but CAT and GSH-Px activities and GSH levels were decreased. Immobilization stress decreased the activity of G-6-PD. The activities of G-6-PD, CAT and GSH-Px, and the level of GSH were lower in CS+IS group than in the control group. Cu,Zn-SOD activity and TBARS levels were increased in CS+IS group when compared with the control group. From these findings, three stress models are thought to cause oxidative stress.  相似文献   

3.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

4.
The peroxisome proliferators perfluorooctanoic acid (PFOA; 0.02% w/w), perfluorodecanoic acid (PFDA; 0.02%, w/w), nafenopin (0.125%, w/w), clofibrate (0.5%, w/w), and acetylsalicylic acid (ASA; 1%, w/w) were administered to male C57 BL/6 mice in their diet for two weeks. Parameters for Fe3+ ADP, NADPH or ascorbic acid-initiated lipid peroxidation in vitro were measured. Approximately a twofold increase in susceptibility to lipid peroxidation was obtained for all the peroxisome proliferators tested. Cotreatment of mice with the peroxisome proliferator ASA (1%, w/w) and a catalase inhibitor, 3-amino-1,2,4-triazole (AT; 0.4%, w/w) for 7 days resulted in little inhibition of peroxisome proliferation, an elevated level of H2O2 in vivo, and total inhibition of the increased susceptibility to lipid peroxidation in vitro. No increase in lipid peroxidation in vivo was observed. Certain antioxidant enzymes (DT-diaphorase, superoxide dismutase, glutathione transferase, glutathione peroxidase, and glutathione reductase) and components (ubiquinone and α-tocopherol) were also measured. The results showed that there was some induction of these antioxidant enzymes and components by ASA or aminotriazole, except for glutathione peroxidase and superoxide dismutase, which were inhibited. The possible involvement of oxidative stress in the carcinogenicity of peroxisome proliferators is discussed.  相似文献   

5.
We investigated the effects of acute diazepam (DZP) administration on thiobarbituric acid‐reactive substance (TBARS) levels, protein carbonyl content, and on the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in the brain of rats. Additionally, we investigated the antioxidant role of chronic pretreatment with simvastatin on the effects provoked by DZP. Simvastatin was administered (1 or 10 mg/kg by oral gavage) for 30 days. On the 30th day of treatment, groups were randomized and DZP was administered (0.5 or 1.0 mg/kg by intraperitoneal injection). Control groups received saline. Results showed that DZP enhanced TBARS levels and protein carbonyl content and altered enzymatic activity in the brain of rats. Simvastatin prevented most of the alterations caused by DZP on the oxidative stress parameters. Data indicate that DZP administration causes an oxidative imbalance in the brain areas studied; however, in the presence of simvastatin, some of these alterations in oxidative stress were prevented.  相似文献   

6.
It has been reported that the bioactive intermediate metabolites of trazodone might cause hepatotoxicity. This study was designed to investigate the exact mechanism of hepatocellular injury induced by trazodone as well as the protective effects of taurine and/or melatonin against this toxicity. Freshly isolated rat hepatocytes were used. Trazodone was cytotoxic and caused cell death with LC50 of 300 µm within 2 h. Trazodone caused an increase in reactive oxygen species (ROS) formation, malondialdehyde accumulation, depletion of intracellular reduced glutathione (GSH), rise of oxidized glutathione disulfide (GSSG), and a decrease in mitochondrial membrane potential, which confirms the role of oxidative stress in trazodone‐induced cytotoxicity. Preincubation of hepatocytes with taurine prevented ROS formation, lipid peroxidation, depletion of intracellular reduced GSH, and increase of oxidized GSSG. Taurine could also protect mitochondria against trazodone‐induced toxicity. Administration of melatonin reduced the toxic effects of trazodone in isolated rat hepatocytes. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:457‐462, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21509  相似文献   

7.
We have previously suggested that the spin trap agent, N - tert -butyl- &#102 -phenylnitrone (PBN) can function not only as an antioxidant but also as a nitric oxide (NO) donor. To characterize the pharmacological activities of PBN against oxidative damage, we examined the effect of PBN on NO generation under hyperoxic conditions. The formation of NO in mice exposed to 95% oxygen was determined using a NOx analyzer and electron spin resonance (ESR). Levels of NOx, an oxidative product of NO, increased in the blood of mice under these conditions. However, the increase was returned to a normal level by the NOS (nitric oxide synthase) inhibitor, L-NMMA, indicating that the NO was formed via a biosynthetic pathway. In addition, ESR spectra of the liver and brain of control and experimental mice that were measured using Fe(DETC) 2 as an NO trap reagent showed strong ESR signals from NO complexes in the livers of mice exposed to 95% oxygen. When examining the effect of PBN in mice, PBN reduced the NOx formation in the blood under the same hyperoxic conditions. In addition, the ESR intensity of the NO complex was weaker in the PBN-treated mice than in the non-treated mice, showing that PBN possess anti-inflammatory properties. However, under a normal atmosphere, NOx and ESR analyses showed that NO levels increased in PBN-treated mice but not in control mice. These findings suggested that PBN functions as an NO donor under specific physiological conditions. PBN appears to protect against hyperoxia-induced NO toxicity by anti-inflammatory action rather than by serving as an NO donor.  相似文献   

8.
&#110 -Glutamyltransferase (GGT) has a central role in glutathione homeostasis by initiating the breakdown of extracellular GSH. We investigated in the present study whether nitric oxide exposure of CC531 rat colon carcinoma cells modulates GGT and how the activity of the enzyme affects the level of intracellular GSH. The data show that GGT activity was induced in a dose-related manner by two NO-donors (spermineNONOate and nitrosoglutathione) and that antioxidants partly inhibited the induction. SpermineNONOate lowered intracellular GSH and induced apoptosis. Cultivating the cells in cystine-depleted medium also resulted in a 50% lowering of GSH, but this was avoided when GSH was added to the medium. This effect was mediated by the activity of GGT and shown after inhibiting GGT activity with acivicin and cyst(e)ine transporters with alanine and homocysteic acid. This shows that the cells benefit from GGT in maintaining the intracellular GSH level. Cells with induced GGT activity obtained after NO incubation showed a higher uptake rate of cysteine (2-fold), measured by incubating the cells with 35 S-radiolabeled GSH. The enzyme was also induced by interferon- &#110 and tumor necrosis factor- &#102, but this induction was not connected to activation of the endogenous nitric oxide synthase, as the addition of aminoguanidine, a NO-synthase inhibitor, did not affect the induction. The present study shows that the activity of GGT is upregulated by NO-donors and that the colon carcinoma cells, when cultivated in cystine-depleted medium, benefit from the enzyme in maintaining the intracellular level of GSH. Thus, the enzyme will add to the protective measures of the tumor cells during nitrosative stress.  相似文献   

9.
Endotoxin lipopolysaccharide (LPS) and streptozotocin-induced diabetes are known to cause oxidative stress in vivo. There is some evidence that a sublethal dose of LPS provides protection against subsequent oxidative stress. Because of its wide use as a diabetogenic agent, this study was undertaken to determine if streptozotocin can likewise provide a protective effect against further oxidative stress in rats. Female Sprague–Dawley rats were given streptozotocin (50 mg/kg intraperitoneally once) prior to exposure to either bacterial endotoxin from Salmonella abortus equii (5 mg/kg intraperitoneally) or three additional daily doses of streptozotocin (50 mg/kg intraperitoneally). One week after LPS or streptozotocin treatments, oxidative stress was determined by measuring changes in antioxidant activity (glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, glutathione S-transferase, and γ-glutamyltranspeptidase) and in concentrations of glutathione, nitrite, and thiobarbituric acid reactants in liver, kidney, intestine, and spleen. High levels of some antioxidants in the LPS-control and streptozotocin-control rats, in contrast to normal levels found in diabetes + LPS and multidose-streptozotocin rats, suggest that streptozotocin, like LPS, may confer a protective effect against subsequent oxidative stress. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 143–149, 1998  相似文献   

10.
The aim of this study was to investigate the influences of different stress models on the antioxidant status and lipid peroxidation (LPO) in erythrocytes of rats. Swiss-Albino female rats (3 months old) were used in this study. Rats were randomly divided into the following four groups; control group (C), cold stress group (CS), immobilization stress group (IS) and cold+immobilization stress group (CS+IS). Control group was kept in an animal laboratory (22 ±2°C). Rats in CS group were placed in cold room (5°C) for 15 min/day for 15 days. Rats in IS group were immobilized for 180 min/day for 15 days. Rats in CS+IS group were exposed to both cold and immobilization stresses for 15 days. At the end of experimental periods, the activities of glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and concentration of reduced glutathione (GSH) were measured. LPO was determined by measuring the contents of thiobarbituric acid-reactive substances (TBARS). Cu,Zn-SOD activity and TBARS concentration were increased after cold and immobilization stresses, but CAT and GSH-Px activities and GSH levels were decreased. Immobilization stress decreased the activity of G-6-PD. The activities of G-6-PD, CAT and GSH-Px, and the level of GSH were lower in CS+IS group than in the control group. Cu,Zn-SOD activity and TBARS levels were increased in CS+IS group when compared with the control group. From these findings, three stress models are thought to cause oxidative stress.  相似文献   

11.
Increased oxidative stress and antioxidant deficit have been suggested to play a major role in isoproterenol-induced myocardial infarction. The present study was designed to evaluate the effect of alpha-mangostin on the antioxidant defense system and lipid peroxidation against isoproterenol-induced myocardial infarction in rats. Induction of rats with ISO (150 mg/kg body weight, ip) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT) and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GST, and GSH). Pre-treatment with alpha-mangostin (200 mg/kg of body weight per day) orally for 6 days prior to the ISO administration and 2 days along with ISO administration significantly attenuated these changes when compared to the individual treatment groups. These findings indicate the protective effect of alpha-mangostin on lipid peroxidation and antioxidant tissue defense system during ISO-induced myocardial infarction in rats.  相似文献   

12.
The antioxidant properties of S -nitrosoglutathione, a nitric oxide-derived product were studied in different experimental systems. By using the crocin bleaching test, S -nitrosoglutathione, in the presence of copper ions, shows an antioxidant capacity about six times higher than that of Trolox c and referable to the interception of peroxyl radicals by nitric oxide. Copper alone shows a modest inhibitory action, which is about seven times lower than that of Trolox c. S -nitrosoglutathione prevents lipid peroxidation induced by the well-known Fe 2+ /ascorbate system (IC 50 =450 &#119 M) and the inhibitory effect is strongly reinforced by the presence of copper ions (IC 50 =6.5 &#119 M). In addition, cumene hydroperoxide-induced lipid peroxidation is markedly decreased by S -nitrosoglutathione, provided that copper ions, maintained reduced by ascorbate, are present. Decomposition of S -nitrosoglutathione through metal catalysis and/or the presence of reducing agents and the consequent release of nitric oxide are of crucial importance for eliciting the antioxidant power. In this way, copper ions and/or reducing species with low antioxidant potency are able to promote the formation of an extremely strong antioxidant species such as nitric oxide.  相似文献   

13.
The antioxidant properties of S -nitrosoglutathione, a nitric oxide-derived product were studied in different experimental systems. By using the crocin bleaching test, S -nitrosoglutathione, in the presence of copper ions, shows an antioxidant capacity about six times higher than that of Trolox c and referable to the interception of peroxyl radicals by nitric oxide. Copper alone shows a modest inhibitory action, which is about seven times lower than that of Trolox c. S -nitrosoglutathione prevents lipid peroxidation induced by the well-known Fe 2+ /ascorbate system (IC 50 =450 μM) and the inhibitory effect is strongly reinforced by the presence of copper ions (IC 50 =6.5 μM). In addition, cumene hydroperoxide-induced lipid peroxidation is markedly decreased by S -nitrosoglutathione, provided that copper ions, maintained reduced by ascorbate, are present. Decomposition of S -nitrosoglutathione through metal catalysis and/or the presence of reducing agents and the consequent release of nitric oxide are of crucial importance for eliciting the antioxidant power. In this way, copper ions and/or reducing species with low antioxidant potency are able to promote the formation of an extremely strong antioxidant species such as nitric oxide.  相似文献   

14.
Coelenterazine (2-p -hydroxybenzyl-6-(3'-hydroxyphenyl)-8-benzyl-3,7-dihydroimidazolo[1,2-a]pyrazin-3-one, CLZn) and coelenteramine (2-amino-3-benzyl-5-(4'-hydroxyphenyl)-1,4-pyrazine CLM), first described as luciferin and etioluciferin, respectively, of bioluminescent systems in marine organisms are endowed with antioxidant properties. This study was aimed at understanding the structural basis of their chain-breaking properties and at designing new compounds with improved antioxidative properties. For this, a series of 2-amino-1,4-pyrazine derivatives and their related imidazolopyrazinones were synthesised and examined for their capacity to inhibit lipid peroxidation in linoleate micelles subjected to the peroxidizing action of AAPH. Structure-activity relationship studies indicated that the reduction of the peroxidation rate by CLM is mainly determined by the concomitant presence of 5-p-hydroxyphenyl and 2-amino groups in para position. The lipophilic character of substituents also affected this effect. All imidazolopyrazinones induced a lag-time before the onset of the peroxidation process. The hetero-bicyclic imidazolopyrazinone moiety appears as the main contributor to this activity while phenol groups play little role in it. On the other hand, phenol groups were required for the reduction of the peroxidation rate after the lag-phase. The introduction of a supplementary p-hydroxyphenyl substituent at C8 position did not increase chain-breaking properties. The substitution of the C5-p-hydroxyphenyl with a catechol moiety or the introduction of a second amino group on the pyrazine ring yielded the most active compounds, superior to imidazolopyrazinones and reference antioxidants like epigallocatechin gallate, vitamin E and trolox. The strong antioxidant properties of 2,6-diaminopyrazines are not dependent on the presence of hydroxyl groups indicating that their reaction mechanism differs from that of 2-amino-1,4-pyrazine derivatives.  相似文献   

15.
Langendorff perfused rat hearts subjected to 30min hypoxia followed by 20min reoxygenation and the levels of the oxidised and reduced forms of glutathione measured. No change in the concentration of oxidised glutathione was detected in reoxygenated hearts when compared to normoxic controls. In contrast hearts exposed to oxidative stress in the form of H2O2 showed elevated levels of both oxidised glutathione (GSSG) and the glutathione-protein mixed disulphide. These results suggest that if oxidants do contribute to cell damage on reoxygenation of the hypoxic myocardium then their action is local and not through overwhelming of the cells antioxidant defences.  相似文献   

16.
《Free radical research》2013,47(4-5):283-289
Langendorff perfused rat hearts subjected to 30min hypoxia followed by 20min reoxygenation and the levels of the oxidised and reduced forms of glutathione measured. No change in the concentration of oxidised glutathione was detected in reoxygenated hearts when compared to normoxic controls. In contrast hearts exposed to oxidative stress in the form of H2O2 showed elevated levels of both oxidised glutathione (GSSG) and the glutathione-protein mixed disulphide. These results suggest that if oxidants do contribute to cell damage on reoxygenation of the hypoxic myocardium then their action is local and not through overwhelming of the cells antioxidant defences.  相似文献   

17.
α-Tocopherol (a form of vitamin E) is a fat-soluble vitamin that can prevent lipid peroxidation of cell membranes. This antioxidant activity of α-tocopherol can help to prevent cardiovascular disease, atherosclerosis and cancer. We investigated the α-tocopherol level and the expression of α-tocopherol transfer protein (α-TTP) in the leukocytes of children with leukemia. The plasma and erythrocyte α-tocopherol levels did not differ between children with leukemia and the control group. However, lymphocytes from children with leukemia had significantly lower α-tocopherol levels than lymphocytes from the controls (58.4±39.0 ng/mg protein versus 188.9±133.6, respectively; p<0.05), despite the higher plasma α-tocopherol/cholesterol ratio in the leukemia group (5.83±1.64 μmol/mmol versus 4.34±0.96, respectively; p<0.05). No significant differences in the plasma and leukocyte levels of isoprostanes (the oxidative metabolites of arachidonic acid) were seen between the leukemia patients and controls. The plasma level of acrolein, a marker of oxidative stress, was also similar in the two groups. Investigation of α-TTP expression by leukocytes using real-time PCR showed no difference between the two groups. These findings suggest that there may be comparable levels of lipid peroxidation in children with untreated leukemia and controls, despite the reduced α-tocopherol level in leukemic leukocytes.  相似文献   

18.
Nitric oxide is a major vasorelaxant and regulator of the blood pressure. The blood vessels contain several active sources of the superoxide radical, which reacts avidly with nitric oxide to form noxious peroxynitrite. There are large amounts of extracellular-superoxide dismutase (EC-SOD) in the vascular wall. To evaluate the importance of EC-SOD for the physiology of nitric oxide, here we studied the blood pressure in mice lacking the enzyme. In chronically instrumented non-anaesthetized mice there was no difference in mean arterial blood pressure between wild-type controls and EC-SOD mutants. Extensive inhibition of nitric oxide synthases with N -monomethyl- l -arginine however resulted in a larger increase in blood pressure, and infusion of the nitric oxide donor nitrosoglutathione caused less reduction in blood pressure in the EC-SOD null mice. We interpret the alterations to be caused by a moderately increased consumption of nitric oxide by the superoxide radical in the EC-SOD null mice. One role of EC-SOD may be to preserve nitric oxide, a function that should be particularly important in vascular pathologies, in which large increases in superoxide formation have been documented.  相似文献   

19.
Nitric oxide is a major vasorelaxant and regulator of the blood pressure. The blood vessels contain several active sources of the superoxide radical, which reacts avidly with nitric oxide to form noxious peroxynitrite. There are large amounts of extracellular-superoxide dismutase (EC-SOD) in the vascular wall. To evaluate the importance of EC-SOD for the physiology of nitric oxide, here we studied the blood pressure in mice lacking the enzyme. In chronically instrumented non-anaesthetized mice there was no difference in mean arterial blood pressure between wild-type controls and EC-SOD mutants. Extensive inhibition of nitric oxide synthases with N -monomethyl- l -arginine however resulted in a larger increase in blood pressure, and infusion of the nitric oxide donor nitrosoglutathione caused less reduction in blood pressure in the EC-SOD null mice. We interpret the alterations to be caused by a moderately increased consumption of nitric oxide by the superoxide radical in the EC-SOD null mice. One role of EC-SOD may be to preserve nitric oxide, a function that should be particularly important in vascular pathologies, in which large increases in superoxide formation have been documented.  相似文献   

20.
Hyperbaric oxygen (HBO) is known to cause oxidative stress in several organs and tissues. Due to its high rate of blood flow and oxygen consumption, the brain is one of the most sensitive organs to this effect. The present study was performed to elucidate the relation of HBO exposure time to its oxidative effects in rats’ brain cortex tissue. For this purpose, 49 rats were randomly divided into five groups. Except the control group, study groups were subjected to three atmospheres HBO for 30, 60, 90, and 120 min. Their cerebral cortex layer was taken immediately after exposure and used for analysis. Thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nitrate–nitrite (NOX) levels were determined. TBARS and SOD levels were found to increase in a time-dependent manner. GSH-Px activity reflected an inconsistent course. NOX levels were found to be increased only in the 120 min exposed group. The results of this study suggests that HBO induced oxidative effects are strongly related with exposure time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号