首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent findings have suggested that oxidative damage might contribute to the cytotoxicity and carcinogenicity of aflatoxin B1 (AFB1). Salvia miltiorrhiza (Sm), a herbal plant that has been used extensively in traditional Chinese medicine for treating cardiovascular and liver diseases, is believed to have some antioxidative capabilities. In this study, the protective effect of Sm against AFB1-induced cytotoxicity was investigated in cultured primary rat hepatocytes. AFB1-induced cytotoxicity and lipid peroxidation (LPO) were estimated by determination of lactate dehydrogenase (LDH) leakage and thiobarbituric acid reactive substances (TBARS) formation, respectively. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA). In addition, changes of intracellular glutathione (GSH) content were also studied. Results showed that Sm was able to suppress the LDH leakage induced by AFB1 in a dose-dependent manner. A dose-dependent inhibitory effect of Sm on AFB1-induced LPO was also found in hepatocytes treated with Sm. It was further observed that Sm produced an inhibitory effect on ROS formation caused by AFB1. Concomitantly, the GSH content in Sm-treated groups increased substantially compared to those without Sm treatment. These findings suggest that Sm can inhibit the cytotoxicity of AFB1 through decreasing ROS formation, inhibiting LPO and preventing GSH depletion. The major component of the aqueous extract of Sm was identified by using high performance liquid chromatography (HPLC), proton magnetic resonance (1H-NMR) and mass spectrum (MS). Analytical results suggested that D(+)β3,4-dihydroxyphenol lactic acid (DA) is the main compound of the aqueous extract of Sm.  相似文献   

2.
Neutral red (NR) in medium was absorbed and concentrated in lysosomes of cultured rat and human hepatocytes. NR uptake increased with the time of incubation and reached a plateau in 2 hr. Uptake was proportional to the concentration of the NR solution and the numbers of viable liver cells. Prolonged culture of hepatocytes increased the numbers of lysosomes, and thus, the dye accumulation. The NR can be extracted from lysosomes for quantitative measurement of hepatocyte viability and cytotoxicity of xenobiotics. With this assay, several serum-free media (e.g., Waymouth's, MEM, LHC-8, etc.) were compared for the maintenance of viable hepatocytes in vitro. Interestingly, LHC-8 medium, which is used to grow human bronchial epithelial cells, best preserved viable rat hepatocytes. The cytotoxic effects of dimethylnitrosamine (DMN) and aflatoxin B1 (AFB1) were examined by NR assay on rat and human hepatocyte cultures and were found to be dependent on dose and time of the exposures. NR50 was 20 mM for DMN and 0.072 µM for AFB1 in rat hepatocytes with 24 hr of exposures and reduced to 12.5 mM for DMN and 0.053 µ uM for AFB1 with 48 fr exposures. Human hepatocytes were more resistant to the toxicity of both chemicals; NR50 values were 100 mM DMN and 1.8 µM AFB1 respectively, for 24 hr treatments. Compared with lactate dehydrogenase (LDH) leakage test, the NR assay was simpler and more sensitive in determining the viability and cytotoxicity of xenobiotics in primary cultures of hepatocytes.Abbreviations NR Neutral Red - MEM Eagle's Minimum Essential Medium - DMN dimethylnitrosamine - AFB1 aflatoxin B1 - LDH lactate dehydrogenase - HBSS Hanks balanced salt solution; - EDTA ethylene bis (oxyethylenenitrilo)-tetraacetic acid - L-15 Leibovitz's 15 - NADH B-nicotinamide adenine dinu - FBS fetal bovine serum - IA immediate autopsy Contribution No. 2816 from Laboratory of Genotoxicology.  相似文献   

3.
Diallyl disulfide (DADS) and diallyl sulfide (DAS) are the major metabolites found in garlic oil and have been reported to lower cholesterol and prevent cancer. The molecular cytotoxic mechanisms of DADS and DAS have not been determined.The cytotoxic effectiveness of hydrogen versus allyl sulfides towards hepatocytes was found to be as follows: NaHS > DADS > DAS. Hepatocyte mitochondrial membrane potential was decreased and reactive oxygen species (ROS) and TBARS formation was increased by all three allyl sulfides. (1) DADS induced cytotoxicity was prevented by the H2S scavenger hydroxocobalamin, which also prevented cytochrome oxidase dependent mitochondrial respiration suggesting that H2S inhibition of cytochrome oxidase contributed to DADS hepatocyte cytotoxicity. (2) DAS cytotoxicity on the other hand was prevented by hydralazine, an acrolein trap. Hydralazine also prevented DAS induced GSH depletion, decreased mitochondrial membrane potential and increased ROS and TBARS formation. Chloral hydrate, the aldehyde dehydrogenase 2 inhibitor, however had the opposite effects, which could suggest that acrolein contributed to DAS hepatocyte cytotoxicity.  相似文献   

4.
Isolated rat hepatocytes were used as an in vitro model to investigate A possible interaction between oxytetracycline (OXT) and aflatoxin B1 (AFB1). LDH leakage, RNA and protein synthesis and glycogen accumulation were measured in the presence of both drugs, either separately or in combination. The evolution of LDH leakage during the incubation was identical in untreated and treated cells. AFB1 inhibited RNA and protein synthesis at a concentration of 10–7 M and 10–6 M, respectively, and higher, whereas OXT did not influence RNA synthesis but inhibited protein synthesis at the highest tested concentration, 10–3 M. As far as glycogen is concerned, rats were injected with glucagon before sacrifice in order to obtain a constant synthesis rate in isolated hepatocytes. AFB1 inhibited the accumulation of glycogen from 10–6 M upward. This effect was never observed before 90 min of incubation. OXT had no effect on glycogen synthesis. In the presence of both drugs, no interaction was demonstrated as far as RNA and protein synthesis were concerned, but OXT opposed the inhibition induced by AFB1 on glycogen accumulation. If the in vivo protection, provided by OXT against AFBI-induced toxicity, is due to a direct interference in the toxic mechanisms of the mycotoxin, these results show that OXT does not influence the AFB1-inhibition of RNA and protein synthesis. The latter are early and sensitive parameters inhibited by AFB1. On the contrary, taking into consideration the results on glycogen accumulation, it seems more interesting to investigate further this metabolism.Abbreviations AFB1 Aflatoxin B1 - OXT Oxytetracycline - DMEM Dulbecco's Modified Eagle's Medium - LDH Lactate Dehydrogenase - DMSO Dimethyl Sulfoxide - BSA Bovine Serum Albumin  相似文献   

5.
Five benzophenones and a xanthone, isolated from Hypericum annulatum Moris, were investigated for their protective effect against carbon tetrachloride toxicity in isolated rat hepatocytes. The benzophenones and the xanthone gentisein were administered alone (100 microM) and in combination with CCl4 (86 microM). CCl4 undergoes dehalogenation in the liver endoplasmic reticulum. This process leads to trichlormethyl radical (*CCl3) formation, initiation of lipid peroxidation, and measurable toxic effects on the hepatocytes. The levels of thiobarbituric acid reactive substances (TBARS) were assayed as an index of lipid peroxidation (LPO). Lactate dehydrogenase (LDH) leakage, cell viability and reduced glutathione (GSH) depletion were used as signs of cytotoxicity. CCl4 significantly decreased hepatocyte viability, GSH level and increased TBARS level and LDH leakage as compared to the control. Our data indicate that 2,3',5',6-tetrahydroxy-4-methoxybenzophenone, 2-O-alpha-L-arabinofuranosyl-3',5',6-trihydroxy-4-methoxybenzophenone and 2-O-alpha-L-3'-acetylarabinofuranosyl-3',5',6-trihydroxy-4-methoxybenzophenone showed weaker toxic effects compared to CCl4 and in combination showed statistically significant protection against the toxic agent.  相似文献   

6.
Role of oxidative stress and Na+,K+-ATPase in the cytotoxicity of hexachlorocyclohexane (HCH) on Ehrlich Ascites tumor (EAT) cells has been studied. HCH caused dose dependent cell death as measured by trypan blue exclusion and lactate dehydrogenase (LDH) leakage from the cells. HCH induced oxidative stress in EAT cells which was characterized by glutathione depletion, lipid peroxidation (LPO), reactive oxygen species (ROS) production and inhibition of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). Protective effect of antioxidants on HCH induced oxidative stress was assessed, among the antioxidants used only quercetin inhibited HCH-induced LPO and ROS production as well as cell death whereas α -tocopherol, ascorbic acid and BHA inhibited LPO but not cell death. Inhibition of membrane bound Na+,K+-ATPase was a characteristic feature of HCH cytotoxicity in EAT cells. Experimental evidence indicates that HCH-induced cell death involves oxidative stress due to ROS production and membrane perturbation in EAT cells.  相似文献   

7.
The study was designed to investigate the protective effect of esculin against pro-oxidant aflatoxin B1 (AFB1)-induced nephrotoxicity in mice. In this study toxicity was developed by oral administration of AFB1 at a dose of 66.60 μg/kg bw/day for 90 days in male Swiss albino mice. Esculin (150 mg/kg bw/0.2 ml/day) and standard compound ascorbic acid (300 mg/kg bw/0.2 ml/day) was given after 30 min of AFB1 administration for 90 days. Protective efficacy was assessed by measuring the levels of lipid peroxidation (LPO) and non-enzymatic antioxidants such as reduced glutathione (GSH) and also by measuring activities of enzymatic antioxidants such as glutathione peroxidase (GPX), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in kidney. Results were analysed at the 30th, 60th and 90th day of the daily treatments, which showed a decrease in the level of LPO and an increase in the levels of enzymatic and non-enzymatic antioxidants. The protective effect of esculin was further proved by histopathological findings as it exhibited regenerative activities in mice renal tubules against AFB1-induced nephrotoxicity. The results obtained clearly demonstrate that the protective efficacy of esculin against pro-oxidant AFB1-induced nephrotoxicity in mice might be due to its antioxidants and free radical scavenging properties.  相似文献   

8.
Wang  Xinghe  Muhammad  Ishfaq  Sun  Xiaoqi  Han  Meiyu  Hamid  Sattar  Zhang  Xiuying 《Molecular biology reports》2018,45(5):881-891

It is well documented that liver is the primary target organ of aflatoxin B1 (AFB1) and curcumin proved to be effective against AFB1-induced liver injury. In the present study, we investigated the preventive effects of curcumin against AFB1-induced apoptosis through the molecular regulation of p53, caspase-3, Bax, caspase-9, Bcl-2 and cytochrome-C associated with mitochondrial pathway. Liver antioxidant levels were measured. The hallmarks of apoptosis were analysed by methyl green-pyronin-Y staining, transmission electron microscopy, RT-PCR and western blot. Results revealed that dietary curcumin ameliorated AFB1-induced oxidative stress in a dose-dependent manner. Methyl green-pyronin-Y staining and transmission electron microscopy showed that AFB1 induced apoptosis and caused abnormal changes in liver cells morphology such as condensation of chromatin material, reduces cell volume and damaged mitochondria. Moreover, mRNA and protein expression results manifested that apoptosis associated genes showed up-regulation in AFB1 fed group. However, the supplementation of dietary curcumin (dose-dependently) alleviated the increased expression of the apoptosis associated genes at mRNA and protein level, and restored the hepatocytes normal morphology. The study provides an insight and a better understanding of the preventive mechanism of curcumin against AFB1-induced apoptosis in hepatocytes and provide scientific basis for the therapeutic uses of curcumin.

  相似文献   

9.
This study focused on the hepatoprotective activity of C-phycocyanin (C-PC) against carbon tetrachloride-induced hepatocyte damage in vitro and in vivo. In in vitro study, human hepatocyte cell line L02 was used. C-PC showed its capability to reverse CCl4-induced L02 cells viability loss, alanine transaminase (ALT) leakage and morphological changes. C-PC also showed the following positive effects: prevent the CCl4-induced overproduction of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA); prevent changes in superoxide dismutase (SOD) activity; and reduce glutathione (GSH) level. In vivo, C-PC showed its capability to decrease serum ALT and aspartate transaminase (AST) levels in CCl4-induced liver damage in mice. The histological observations supported the results obtained from serum enzymes assays. C-PC also showed the following effects in mice liver: prevent the CCl4-induced MDA formation and GSH depletion; prevent SOD and glutathione peroxidase (GSH-Px) activity; and prevent the elevation of transforming growth factor-beta1 (TGF-β1) and hepatocyte growth factor (HGF) mRNAs. Both the in vitro and in vivo results suggested that C-PC was useful in protecting against CCl4-induced hepatocyte damage. One of the mechanisms is believed to be through C-PCs scavenging ability to protect the hepatocytes from free radicals damage induced by CCl4. In addition, C-PC may be able to block inflammatory infiltration through its anti-inflammatory activities by inhibiting TGF-β1 and HGF expression.  相似文献   

10.
Hexachlorocyclohexane (HCH) is a highly recalcitrant organochlorine insecticide known for its chronic toxicity. In spite of many isolated studies a clear mechanism of cytotoxic action of HCH and the structure–toxicity relationship of its isomers is not well understood. We have investigated the toxicity of HCH isomers and its mechanism in Ehrlich Ascites tumor (EAT) cells. Our studies show differential cytotoxicity of HCH isomers (α, β, γ, and δ), δ isomer being most toxic and β the least. HCH-induced cell death was associated with induction of reactive oxygen species (ROS) formation, lipid peroxidation (LPO), and depletion of glutathione (GSH). The increase in oxidative stress was linked with increased NAD(P)H oxidase activity. HCH inhibited Na+,K+-ATPase, which could be involved in raising the intracellular calcium and increased Ca2+,Mg2+-ATPase activity. HCH lead to apoptotic as well as necrotic cell death as it was marked by increased caspase-3 activity and lactate dehydrogenase (LDH) leakage, respectively. Based on the results it is concluded that the HCH isomers inflict differential cytotoxicity which was highest by δ and lowest by β. Further, this study demonstrates for the first time a clear link between Na+,K+-ATPase, i[Ca2+] level, and oxidative stress in HCH-induced cytotoxicity.  相似文献   

11.
Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390–401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be activated by alcohol dehydrogenase. However, it is a poor substrate compared to allyl alcohol and it was therefore proposed that propargyl alcohol-induced liver injury involved metabolic activation by catalase/H2O2 [E.G. De Master, T. Dahlseid, B. Redfern, Chem. Res. Toxicol. 7 (1994) 414–419]. In the following we showed that; (1) propargyl alcohol-induced cytotoxicity was markedly enhanced in CYP 2E1-induced hepatocytes and prevented by various CYP 2E1 inhibitors but was only slightly affected when alcohol dehydrogenase was inhibited with methylpyrazole/DMSO or when catalase was inactivated with azide or aminotriazole, (2) hepatocyte GSH depletion preceded cytotoxicity and was inhibited by cytochrome P450 inhibitors but not by catalase/alcohol dehydrogenase inhibitors. GSH conjugate formation during propargyl alcohol metabolism by microsomal mixed function oxidase in the presence of GSH was also prevented by anti-rat CYP 2E1 or CYP 2E1 inhibitors, (3) cytotoxicity was prevented when lipid peroxidation was inhibited with antioxidants, desferoxamine (ferric chelator) or dithiothreitol. Propargyl alcohol-induced cytotoxicity and reactive oxygen species formation were markedly increased in GSH-depleted hepatocytes. All of this evidence suggests that propargyl alcohol-induced cytotoxicity involves metabolic activation by CYP 2E1 to form propiolaldehyde that causes hepatocyte lysis as a result of GSH depletion and lipid peroxidation.  相似文献   

12.
Summary. The relationship between cellular glutathione (GSH), protein-SH levels, and lactate dehydrogenase (LDH), with respect to the effect of polyamines on the cytoprotective ability of L-cysteine and L-methionine, the most important components in the sulfur amino acid metabolic pathway, in carbon tetrachloride (CCl4)-induced toxicity in isolated rat hepatocytes was studied. CCl4 induced a LDH release and decreased cellular thiols and polyamines levels but treatment with L-cysteine and L-methionine reversed these decreases. Treating with methylglyoxal bis-(guanylhydrazone), MGBG, an irreversible inhibitor of S-adenosylmethionine decarboxylase, which is a key enzyme in spermidine and spermine biosynthesis, and therefore used to deplete cellular polyamines, prevented the protective effect of L-cysteine and L-methionine, but the addition of exogenous polyamines inhibited the influence of MGBG. These results suggest that the cytoprotective effect of L-cysteine and L-methionine in CCl4-induced toxicity were via maintenance of cellular polyamines, GSH and protein-SH concentrations and prevention of LDH leakage. Received September 1, 1999, Accepted January 11, 2000  相似文献   

13.
(1) Morroniside belongs to an extensive group of natural iridorid glycosides. In the present study, using human neuroblastoma SH-SY5Y cells, we have investigated the protective effects of this compound on modifications in endogenous reduced glutathione (GSH), intracellular oxygen species (ROS) and apoptotic death on H2O2-mediated cytoxicity. (2) Incubation of cells with morroniside led to a significant dose-dependent elevation of cellular GSH accompanied by a marked protection against H2O2-mediated toxicity. Morroniside at 1–100 μM inhibited the formation of ROS and the activation of caspase-3 and 9, and the upregulation of Bcl-2, whereas no significant change occurred in Bax levels. (3) The results indicated that the anti-oxidative and anti-apoptotic properties render this natural compound potentially protective against H2O2-induced cytotoxicity. (4) This study suggested that intracellular GSH appeared to be an important factor in morroniside-mediated cytoprotection against H2O2-toxicity in SH-SY5Y cells.  相似文献   

14.
Lithium preparations are commonly used drug in treating mental disorders and bipolar diseases, but metal's cytotoxic mechanisms have not yet been completely understood. In this study, we investigated the cytotoxic mechanisms of lithium in freshly isolated rat hepatocytes. Lithium cytotoxicity were associated with reactive oxygen species (ROS) formation and collapse of mitochondrial membrane potential and cytochrome c release into the hepatocyte cytosol. All of the mentioned lithium-induced cytotoxicity markers were significantly (P?相似文献   

15.
In searching for a reliable index for cytotoxicity testing in rat hepatocyte primary culture, lactate dehydrogenase (LDH) concentrations in lysates of attached hepatocytes and LDH released into the culture medium were compared under conditions of exposure to various dosages of sodium chloride, sodium salicylate, R-warfarin, acetaminophen, phenylbutazone, and furosemide (frusemide). The amount of intracellular LDH was assessed by inducing the cells to release the enzyme with 0.1% Tritron X-100. The induced LDH leakage was completed in 1 hr and the LDH activity was stable in storage at 10° for 2 weeks. We found that intracellular LDH is a direct indicator of the number of viable hepatocytes in contrast to the LDH released, because released LDH does not account for the significant number of cells detached from monolayer but which are not leaky, during the 6-hr test period. Based on IC50 values (50% inhibitory concentration), the relative cytotoxicities are R-warfarin > phenylbutazone > furosemide > acetaminophen > sodium salicylate > sodium chloride.Abbreviations DMSO dimethyl sulfoxide - HPC hepatocyte primary culture - IC50 50% inhibitory concentration - LDH lactate dehydrogenase  相似文献   

16.
The inhibitory effects of four chlorophyll derivatives (chlorophyllide [Chlide] a and b and pheophorbide [Pho] a and b) on aflatoxin B1 (AFB1)-DNA adduct formation, and on the modulation of hepatic glutathione S-transferase (GST) were evaluated in murine hepatoma (Hepa-1) cells. Enzyme-linked immunosorbent assay showed that pretreatment with Chlide or Pho significantly reduced the formation of AFB1-DNA adducts, and that Pho was the most potent inhibitor. However, wash-out prior to adding AFB1 totally eliminated inhibition by Childe and partially eliminated inhibition by Pho, indicating that the inhibitory effect of Chlide, and to some extent Pho, was mediated through direct trapping of AFB1. Furthermore, spectrophotometric analysis showed that Pho treatment could increase GST activity in Hepa-1 cells. These observations indicate that the chlorophyll derivatives studied may attenuate AFB1-induced DNA damage in the Hepa-1 cell by direct trapping of AFB1. Pho provided additional protection not only by direct trapping, but also by increasing GST activity against hepatic AFB1 metabolites.  相似文献   

17.
It has been reported that the bioactive intermediate metabolites of trazodone might cause hepatotoxicity. This study was designed to investigate the exact mechanism of hepatocellular injury induced by trazodone as well as the protective effects of taurine and/or melatonin against this toxicity. Freshly isolated rat hepatocytes were used. Trazodone was cytotoxic and caused cell death with LC50 of 300 µm within 2 h. Trazodone caused an increase in reactive oxygen species (ROS) formation, malondialdehyde accumulation, depletion of intracellular reduced glutathione (GSH), rise of oxidized glutathione disulfide (GSSG), and a decrease in mitochondrial membrane potential, which confirms the role of oxidative stress in trazodone‐induced cytotoxicity. Preincubation of hepatocytes with taurine prevented ROS formation, lipid peroxidation, depletion of intracellular reduced GSH, and increase of oxidized GSSG. Taurine could also protect mitochondria against trazodone‐induced toxicity. Administration of melatonin reduced the toxic effects of trazodone in isolated rat hepatocytes. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:457‐462, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21509  相似文献   

18.
The effect of rifamycin SV on metabolic performance and cell viability was studied using isolated hepatocytes from fed, starved and glutathione (GSH) depleted rats. The relationships between GSH depletion, nutritional status of the cells, glucose metabolism, lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) production in the presence of rifamycin SV and transition metal ions was investigated. Glucose metabolism was impaired in isolated hepatocytes from both fed and starved animals, the effect is dependent on the rifamycin SV concentration and is enhanced by copper (II). Oxygen consumption by isolated hepatocytes from starved rats was also increased by copper (II) and a partial inhibition due to catalase was observed. Cellular GSH levels which decrease with increasing the rifamycin SV concentration were almost depleted in the presence of copper (II). A correlation between GSH depletion and LDH leakage was observed in fed and starved cells. Catalase induced a slight inhibition of the impairment of gluconeogenesis, GSH depletion and LDH leakage in starved hepatocytes incubated with rifamycin SV, iron (II) and copper (II) salts. Lipid peroxidation measured as MDA production by isolated hepatocytes was also augmented by rifamycin SV and copper (II), especially in hepatic cells isolated from starved and GSH depleted rats. Higher cytotoxicity was observed in isolated hepatocytes from fasted animals when compared with fed or GSH depleted animals. It seems likely that in addition to GSH level, there are other factors which may have an influence on the susceptibility of hepatic cells towards xenobiotic induced cytotoxicity.  相似文献   

19.
S-Adenosyl-l-methionine (SAM) is the principal biological methyl donor. Methionine adenosyltransferase (MAT) catalyzes the only reaction that generates SAM. Hepatocytes were treated with cycloleucine, an inhibitor of MAT, to evaluate whether hepatocytes enriched in cytochrome P450 2E1 (CYP2E1) were more sensitive to a decline in SAM. Cycloleucine decreased SAM and glutathione (GSH) levels and induced cytotoxicity in hepatocytes from pyrazole-treated rats (with an increased content of CYP2E1) to a greater extent as compared to hepatocytes from saline-treated rats. Apoptosis caused by cycloleucine in pyrazole hepatocytes appeared earlier and was more pronounced than control hepatocytes and could be prevented by incubation with SAM, glutathione reduced ethyl ester and antioxidants. The cytotoxicity was prevented by treating rats with chlormethiazole, a specific inhibitor of CYP2E1. Cycloleucine induced greater production of reactive oxygen species (ROS) in pyrazole hepatocytes than in control hepatocytes, and treatment with SAM, Trolox, and chlormethiazole lowered ROS formation. In conclusion, lowering of hepatic SAM levels produced greater toxicity and apoptosis in hepatocytes enriched in CYP2E1. This is due to elevated ROS production by CYP2E1 coupled to lower levels of hepatoprotective SAM and GSH. We speculate that such interactions e.g. induction of CYP2E1, decline in SAM and GSH may contribute to alcohol liver toxicity.  相似文献   

20.
Lee YW  Ha MS  Kim YK 《Neurochemical research》2001,26(11):1187-1193
The present study was undertaken to examine the role of reactive oxygen species (ROS) and glutathione (GSH) in glia cells using human glioma cell line A172 cells. HgCl2 caused the loss of cell viability in a dose-dependent manner. HgCl2-induced loss of cell viability was not affected by H2O2 scavengers catalase and pyruvate, a superoxide scavenger superoxide dismutase, a peroxynitrite scavenger uric acid, and an inhibitor of nitric oxide NG-nitro-arginine Methyl ester. HgCl2 did not cause changes in DCF fluorescence, an H2O2-sensitive fluorescent dye. The loss of cell viability was significantly prevented by the hydroxyl radical scavengers dimethylthiourea and thiourea, but it was not affected by antioxidants DPPD and Trlox. HgCl2-induced loss of cell viability was accompanied by a significant reduction in GSH content. The GSH depletion was almost completely prevented by thiols dithiothreitol and GSH, whereas the loss of viability was partially prevented by these agents. Incubation of cells with 0.2 mM buthionine sulfoximine for 24 hr, a selective inhibitor of -glutamylcysteine synthetase, resulted in 56% reduction in GSH content without any change in cell viability. HgCl2 resulted in 34% reduction in GSH content, which was accompanied by 59% loss of cell viability. These results suggest that HgCl2-induced cell death is not associated with generation of H2O2 and ROS-induced lipid peroxidation. In addition, these data suggest that the depletion of endogenous GSH itself may not play a critical role in the HgCl2-induced cytotoxicity in human glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号