共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) released from polymorphonuclear leukocytes and macrophages could cause DNA damage, but also induce cell death. Therefore inhibition of cell death must be an important issue for accumulation of genetic changes in lymphoid cells in inflammatory foci. Scavengers in the post culture medium of four lymphoid cell lines, lymphoblastoid cell lines (LCL), Raji, BJAB and Jurkat cells, were examined. Over 80% of cultured cells showed cell death 24 h after xanthine (X)/xanthine oxidase (XOD) treatment, which was suppressed by addition of post culture medium from four cell lines in a dose-dependent manner. H2O2 but not O2*- produced by the X/XOD reaction was responsible for the cytotoxity, thus we used H2O2 as ROS stress thereafter. The H2O2-scavenging activity of post culture media from four cell lines increased rapidly at the first day and continued to increase in the following 2-3 days for LCL, Raji and BJAB cells. The scavenging substance was shown to be pyruvate, with various concentrations in the cultured medium among cell lines. Over 99% of total pyruvate was present in the extracellular media and less than 1% in cells. alpha-Cyano-4-hydroxycinnamate, a specific inhibitor of the H+-monocarbohydrate transporter, increased the H2O2-scavenging activity in the media from all four cell lines via inhibition of pyruvate re-uptake by cultured cells from the media. These findings suggest that lymphoid cells in inflammatory foci could survive even under ROS by producing pyruvate, so that accumulation of lymphoid cells with DNA damage is possible. 相似文献
2.
Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production 总被引:10,自引:0,他引:10
Tamás L Budíková S Huttová J Mistrík I Simonovicová M Siroká B 《Plant cell reports》2005,24(3):189-194
The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H2O2 generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H2O2. Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body. 相似文献
3.
BACKGROUND: Glutathione plays crucial roles in antioxidant defence and glutathione deficiency contributes to oxidative stress and may therefore play a key role in the pathogenesis of many diseases. The objectives of the present study were to evaluate the effects on glutathione turnover of thiol and non-thiol antioxidants in human cell cultures and if any of the antioxidant had a short-term cellular effect against different levels of hydrogen peroxide. METHODS: We have investigated the effect on the total glutathione amount in HeLa and hepatoma cell cultures of thiol antioxidants in comparison with non-thiol antioxidants, such as a copper chelator, Vitamin C, and a flavonoid. Furthermore, we have investigated the short-term (within 24h) interaction of the different antioxidants with hydrogen peroxide. RESULTS AND CONCLUSION: Lipoic acid and quercetin (Quer) were the two antioxidants that showed the highest stimulation of glutathione synthesis in cell cultures as judged by the total glutathione amount. However, no antioxidant protected against hydrogen peroxide present in concentrations that lowered cell protein. This finding may be attributed to the fact that it is necessary to incubate cell cultures with antioxidants or small doses of oxidants for a period before the cultures are exposed to hydrogen peroxide in order to enhance the antioxidant defence. The presence of Quer and Vitamin C lowered cell protein and total glutathione even in cell cultures containing hydrogen peroxide in concentrations that did not lower cell protein. This finding might be attributed to pro-oxidant properties and formation of excess reactive oxygen species in the presence of Quer and Vitamin C. 相似文献
4.
5.
Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. 相似文献
6.
Nakamichi N Kambe Y Oikawa H Ogura M Takano K Tamaki K Inoue M Hinoi E Yoneda Y 《Journal of neurochemistry》2005,93(1):84-93
In cortical neurons cultured for 3 or 9 days in vitro (DIV), exposure to hydrogen peroxide (H(2)O(2)) led to a marked decrease in cell viability in a concentration-dependent manner at a concentration range of 10 microm to 1 mm irrespective of the duration between 6 and 24 h. However, H(2)O(2) was more potent in decreasing cellular viability in cortical neurons cultured for 9 DIV than in those for 3 DIV. Pyruvate was effective in preventing the neuronal cell death at 1 mm even when added 1-3 h after the addition of H(2)O(2). Semi-quantitative RT-PCR and western blotting analyses revealed significantly higher expression of both mRNA and protein for a particular monocarboxylate transporter (MCT) in neurons cultured for 9 DIV than in those for 3 DIV. A specific inhibitor of MCT significantly attenuated the neuroprotection by pyruvate in neurons cultured for 9 DIV, without markedly affecting that in neurons cultured for 3 DIV. These results suggest that vulnerability to H(2)O(2) may at least in part involve expression of particular MCT isoforms responsible for the bi-directional transport of pyruvate across cell surfaces in cultured rat cortical neurons. 相似文献
7.
Hydrogen peroxide suppresses U937 cell death by two different mechanisms depending on its concentration 总被引:8,自引:0,他引:8
To investigate the mechanisms of H2O2 adaptation in mammalian cells, we exposed human U937 leukemia cells to 0.05 mM H2O2. This treatment significantly suppressed cell death and DNA fragmentation induced by a subsequent challenge with 1 mM H2O2. A more dramatic protection was observed when cells were pretreated with 0.25 mM H2O2. Pretreatment with either 0.05 or 0.25 mM H2O2 also imparted cells with a survival advantage against serum withdrawal and C2-ceramide treatment. H2O2 was found to be a mediator of cell death induced by serum withdrawal, but not by the addition of C2-ceramide. Interestingly, 0.25 mM H2O2 greatly induced glutathione peroxidase, a H2O2-consuming enzyme, whereas 0.05 mM H2O2 did not. Consistent with observation, pretreatment with 0.25 mM H2O2 resulted in a great reduction of cellular oxidant levels as determined by 2'7'-dichlorofluorescein fluorescence, and it also prevented elevation of oxidant levels upon subsequent challenge with 1 mM H2O2 or with serum withdrawal. These effects were not observed in cells pretreated with 0.05 mM H2O2. The sum of the data indicated that H2O2 suppresses cell death by two different mechanisms depending on its concentration: Relatively high concentrations enhance cellular antioxidant capacity, and lower concentrations block the lethal action of H2O2. 相似文献
8.
Reactive oxygen species (ROS) have been traditionally regarded as toxic by-products of aerobic metabolism. However, ROS also act as intracellular signaling molecules and can mediate phenotypes in vascular endothelial cells, which may be physiological or pathological in nature. To clarify the molecular mechanisms of ROS signaling, we examined hydrogen peroxide (H(2)O(2))-responsive proteins in cultured human dermal microvascular endothelial cells (HMVEC) using proteomic tools. Protein expression in HMVEC was studied after they had been exposed to low- and high-levels of H(2)O(2) for various times, and intracellular ROS production was examined by flow cytometer and UV spectrophotometer. Proteins obtained from dose- and time-dependent series were separated by two-dimensional gel electrophoresis and tentatively identified by matrix-assisted laser desorption-time of flight mass spectrometry, by matching the tryptic mass maps obtained with entries in the NCBI and Swiss-Prot protein sequence database. At least 163 proteins were changed by H(2)O(2), and 60 proteins were identified. Oxidative stress triggered dramatic change in the expression of proteins in primary microvessel endothelial cells, and their mapping to cellular process provided a view of the ubiquitous cellular changes elicited by H(2)O(2). These results could provide a framework for the understanding of the mechanisms of cellular redox homeostasis and H(2)O(2) metabolism in microendothelium environment in various biological processes as well as pathological conditions. 相似文献
9.
Hernández-García D Castro-Obregón S Gómez-López S Valencia C Covarrubias L 《Experimental cell research》2008,314(10):2090-2099
The formation of the proamniotic cavity is the first indication of programmed cell death associated to a morphogenetic process in mammals. Although some growth factors have been implicated in proamniotic cavitation, very little is known about the intracellular mechanisms that control the cell death process itself. Reactive oxygen species (ROS) are potent activators of cell death, thus, in the present work we evaluated the role of ROS during the cavitation of embryoid bodies (EBs), a common model to study proamniotic cavitation. During cavitation, ROS concentration increases in the inner cells of EBs, and this ROS accumulation appears to be associated with the mitochondrial respiratory activity. In agreement with a role of ROS in cavitation, EBs derived from ES cells that overproduce catalase, an enzyme that specifically degrades hydrogen peroxide, do not cavitate, and caspase activation and cell death is markedly decreased. Notably, cell death, but not the rise in ROS, during EB cavitation is caspase-dependent. The apoptosis-inducing factor (Aif) is released from the mitochondria during cavitation, but EBs derived from Aif−/y ES cells cavitate and ROS levels in the inner cells remain high. We conclude that hydrogen peroxide is a cell death activating signal essential for EB cavitation, suggesting that cell death during proamniotic cavitation is mediated by ROS. 相似文献
10.
Root growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production 总被引:1,自引:0,他引:1
Summary. The effect of aluminum on hydrogen peroxide production and peroxidase-catalyzed NADH oxidation was studied in barley roots germinated and grown between two layers of moistened filter paper. Guaiacol peroxidase activity significantly increased after 48h and was approximately two times higher after 72h in Al-treated roots. The oxidation of NADH was also significantly increased and, like guaiacol peroxidase activity, it was two times higher in Al-treated roots than in controls. Elevated H2O2 production was observed both 48 and 72h after the onset of imbibition in the presence of Al. Separation on a cation exchange column allowed the detection of two peaks with NADH peroxidase and H2O2 production activity. However, a difference between control and Al-treated plants was found only in one fraction, in which four times higher guaiacol peroxidase activity and five times higher NADH peroxidase activity were expressed and about three times more H2O2 was produced. One anionic peroxidase and three cationic peroxidases were detected in this fraction by native polyacrylamide gel electrophoresis. The anionic peroxidase was activated in the Al-treated root tips and also oxidized NADH but was detectable only after a long incubation time. Two of the cationic peroxidases were capable of oxidizing NADH and producing a significant amount of H2O2, but only one of these was activated by Al stress. The role of these peroxidases during Al stress in barley root tips is discussed.Correspondence and reprints: Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, 845 23 Bratislava, Slovakia. 相似文献
11.
We investigated the effect of vanadate, a tyrosine phosphatase inhibitor, on cell death induced by peroxynitrite in human neuroblastoma SH-SY5Y cells. Vanadate prevented cell death induced by 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor; whereas SIN-1-induced cell death was not prevented by neither okadaic acid, an inhibitor of serine/threonine phosphatases 1 and 2A, nor cyclosporin A, an inhibitor of serine/threonine phosphatase 2B. Vanadate did not prevent cell death induced by N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine, a nitric oxide donor. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not block the protective effect of vanadate, suggesting that the protective effect of vanadate is independent on PI3-kinase. Vanadate increased tyrosine phosphorylation of several proteins including the focal adhesion protein p130 Crk-associated substrate (p130(cas)). By the treatment with SIN-1, the endogenous association of p130(cas) and Crk was disrupted, and the association was restored by vanadate treatment. These results suggest that disruption of tyrosine phosphorylation signaling may be critical for peroxynitrite-induced cell death, and that vanadate prevents cell death at least in part through the enhancement in tyrosine phosphorylation of the proteins including p130(cas). 相似文献
12.
Charkoudian LK Dentchev T Lukinova N Wolkow N Dunaief JL Franz KJ 《Journal of inorganic biochemistry》2008,102(12):2130-2135
Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson’s, Alzheimer’s, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide) prochelators that are converted by hydrogen peroxide into SIH (salicylaldehyde isonicotinoyl hydrazone) chelating agents that inhibit iron-catalyzed hydroxyl radical generation. Here, we show that BSIH protects a cultured cell model for retinal pigment epithelium against cell death induced by hydrogen peroxide. BSIH is more stable than SIH in cell culture medium and is more protective during long-term experiments. Repetitive exposure of cells to BSIH is nontoxic, whereas SIH and desferrioxamine induce cell death after repeated exposure. Combined, our results indicate that cell protection by BSIH involves iron sequestration that occurs only when the cells are stressed by hydrogen peroxide. These findings suggest that prochelators discriminate toxic iron from healthy iron and are promising candidates for neuro- and retinal protection. 相似文献
13.
Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus 总被引:1,自引:0,他引:1
Tritrichomonas foetus is an amitochondrial parasite protist which lacks typical eukaryote organelles such as mitochondria and peroxisomes, but possesses the hydrogenosome, a double-membrane-bound organelle that produces ATP. The cell death of amitochondrial organisms is poorly studied. In the present work, the cytotoxic effects of hydrogen peroxide on T. foetus and its participation on cell death were analyzed. We took advantage of several microscopy techniques, including videomicroscopy, light microscopy immunocytochemistry for detection of caspase activation, and scanning and transmission electron microscopy. We report here that in T. foetus: (1) H2O2 leads to loss of motility and induces cell death, (2) the dying cells exhibit some characteristics similar to those found during the death of other organisms, and (3) a caspase-like protein seems to be activated during the death process. Thus, we propose that, although T. foetus does not present mitochondria nor any known pathways of cell death, it is likely that it bears mechanisms of cell demise. T. foetus exhibits morphological and physiological alterations in response to H2O2 treatment. The hydrogenosome, a unique organelle which is supposed to share a common ancestral origin with mitochondria and has an important role in oxidative responses in trichomonads, is a candidate for participating in this event.Abbreviations TUNEL Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick-end labeling - PARP Poly (ADP-ribose) polymerase - DAPI 4,6-Diamidino-2-phenylindole dihydrochloride 相似文献
14.
The interplay between nitric oxide (NO) and reactive oxygen species can lead to an induction of cell death in plants. The
aim of our work was to find out if cyanide released from sodium nitroprusside (SNP; a donor of NO) could be involved in the
cell death induction, which is triggered by SNP and H2O2. Cell suspension of Nicotiana tabacum L. (line BY-2) was treated with 0.5 mM SNP, 0.5 mM potassium ferricyanide (PFC; analogue of sodium nitroprusside which can
not release NO) and/or by 0.5 mM glucose with 0.5 U cm−3 glucose oxidase (GGO; a donor system of H2O2). The cell death was induced only by combination of SNP and GGO. Thus cyanide released was not involved in the induction
of cell death. However, SNP showed toxic effect because of decrease in activities of intracellular oxidoreductases and esterases.
The cell death caused by SNP and GGO occurred within 12 h. During cell death either length or width of the cell increased.
Central vacuole was formed in 20 to 40 % of cells. Most of the dead cells showed a condensed cytoplasm. Two hallmarks of programmed
cell death (PCD), chromatin condensation and blebbing of nuclear periphery, were observed. However, oligonucleosomal fragmentation
of DNA, another hallmark of PCD, was not detected. 相似文献
15.
Agnieszka Krawczyk Dariusz Nowak Piotr Jan Nowak Gianluca Padula 《Redox report : communications in free radical research》2017,22(6):308-314
Objectives: Reactive oxygen species, which are implicated in the process of carcinogenesis, are also responsible for cell death during chemotherapy (CHT). Therefore, the aim of the study was to evaluate exhaled H2O2 levels in non-small cell lung cancer (NSCLC) patients before and after CHT.Methods: Thirty patients (age 61.3?±?9.3 years) with advanced NSCLC (stage IIIB–IV) and 15 age-matched healthy cigarette smokers were enrolled into the study. Patients received four cycles of cisplatin or carboplatin with vinorelbine every three weeks. Before and after the first, second, and fourth cycle, the concentration of H2O2 in exhaled breath condensate was measured with respect to treatment response.Results: At the baseline, NSCLC patients exhaled 3.8 times more H2O2 than the control group (0.49?±?0.14 vs. 0.13?±?0.03?µmol/L, P?0.05); this difference persisted throughout the study. CHT had no noticeable effect on exhaled H2O2 levels independent of the treatment response (partial remission vs. progressive disease). Pre- and post-CHT cycles of H2O2 levels generally correlated positively.Discussion: The study demonstrated the occurrence of oxidative stress in the airways of advanced NSCLC patients. Exhaled H2O2 level was not affected by CHT and independent of treatment results and changes in the number of circulating neutrophils. 相似文献
16.
17.
Chervin Hassel Morgane Couchet Nathalie Jacquemot Christelle Blavignac Ccile Loï Christophe Moinard David Cia 《Journal of cellular and molecular medicine》2022,26(10):2808
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress. 相似文献
18.
Lee Hua Long 《Biochemical and biophysical research communications》2009,388(4):700-450
Ascorbate and several phenolic compounds readily oxidise in cell culture media to generate hydrogen peroxide. However, media containing pyruvate showed much less H2O2 production, apparently because pyruvate can scavenge H2O2 in the medium. Researchers must be aware that compounds under test can sometimes readily oxidise in cell culture media, that this might not be detected by measurement of H2O2 if the media contain pyruvate, and that pyruvate can be substantially depleted in the media as a result. 相似文献
19.
Gechev TS Ferwerda MA Mehterov N Laloi C Qureshi MK Hille J 《Biochemical and biophysical research communications》2008,375(4):639-644
The fungal AAL-toxin triggers programmed cell death (PCD) through perturbations of sphingolipid metabolism in AAL-toxin-sensitive plants. While Arabidopsis is relatively insensitive to the toxin, the loh2 mutant exhibits increased susceptibility to AAL-toxin due to the knockout of a gene involved in sphingolipid metabolism. Genetic screening of mutagenized loh2 seeds resulted in the isolation of AAL-toxin-resistant mutant atr1.Atr1 displays a wild type phenotype when grown on soil but it develops less biomass than loh2 on media supplemented with 2% and 3% sucrose. Atr1 was also more tolerant to the reactive oxygen species-generating herbicides aminotriazole (AT) and paraquat. Microarray analyses of atr1 and loh2 under AT-treatment conditions that trigger cell death in loh2 and no visible damage in atr1 revealed genes specifically regulated in atr1 or loh2. In addition, most of the genes strongly downregulated in both mutants were related to cell wall extension and cell growth, consistent with the apparent and similar AT-induced cessation of growth in both mutants. This indicates that two different pathways, a first controlling growth inhibition and a second triggering cell death, are associated with AT-induced oxidative stress. 相似文献
20.
一株口腔链球菌新种—寡发酵链球菌产过氧化氢特性的研究 总被引:3,自引:0,他引:3
从健康人口腔中分离的寡发酵链球菌(Streptococcus oligofermentans)能够产生大量的过氧化氢,可能具有抑制致病菌的潜力。为了研究该细菌产过氧化氢的特性,检测了其在不同生长时期和从不同底物产过氧化氢的能力。结果表明,寡发酵链球菌从对数生长早期就开始产过氧化氢,在对数生长后期及稳定期过氧化氢产量达到最高,随后下降。在PYG培养基中,寡发酵链球菌所产的过氧化氢主要来源于大豆蛋白胨和酵母提取物;而代谢终产物乳酸也可作为过氧化氢产生的底物。对3种可能与过氧化氢生成有关的氧化酶的酶活测定表明,寡发酵链球菌具有乳酸氧化酶(LOX)及NADH氧化酶(NOX)的活性,说明其过氧化氢的产生主要依赖于这两种酶的活力。 相似文献