首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Thalassemic patients often exhibit high levels of oxidative stress and iron overload, which can lead to hazardous complications. Curcuminoids, extracted from the spice turmeric, are known to have antioxidant and iron-chelating properties and have been proposed as a potential upstream therapy of thalassemia. Here we have applied proteomic techniques to study the protein profile and oxidative damage in the plasma of β-thalassemia/Hb E patients before and after treatment with curcuminoids. In this study, 10 β-thalassemia/Hb E patients were treated with 500 mg curcuminoids daily for 12 months. The plasma protein profile and protein carbonyl content were determined at baseline, 6 and 12 months using two-dimensional fluorescence difference gel electrophoresis and carbonyl immunoblotting, respectively. Other hematological, clinical, and biochemical parameters were also analyzed. Twenty-six spots, identified as coagulation factors and proteins involved in iron homeostasis, showed significantly decreased intensity in thalassemic plasma, compared to those of normal subjects. Treatment with curcuminoids up-regulated the plasma levels of these proteins and reduced their oxidative damage. Serum non-transferrin bound iron, platelet factor-3 like activity, oxidative stress parameters and antioxidant enzymes were also improved after curcuminoids treatment. This study is the first proteomic study of plasma in the thalassemic state and also shows the ameliorating role of curcuminoids towards oxidative stress and iron overload in the plasma proteome.  相似文献   

2.
A number of beta-thalassemia (β-thal) patients in the course of the disease exhibit ectopic calcification affecting skin, eyes and the cardiovascular system. Clinical and histopathological features have been described similar to those in pseudoxanthoma elasticum (PXE), although different genes are affected in the two diseases. Cultured dermal fibroblasts from β-thal patients with and without PXE-like clinical manifestations have been compared for parameters of redox balance and for the expression of proteins, which have been already associated with the pathologic mineralisation of soft connective tissues. Even though oxidative stress is a well-known condition of β-thal patients, our results indicate that the occurrence of mineralized elastin is associated with a more pronounced redox disequilibrium, as demonstrated by the intracellular increase of anion superoxide and of oxidized proteins and lipids. Moreover, fibroblasts from β-thal PXE-like patients are characterized by decreased availability of carboxylated matrix Gla protein (MGP), as well as by altered expression of proteins involved in the vitamin K-dependent carboxylation process. Results demonstrate that elastic fibre calcification is promoted when redox balance threshold levels are exceeded and the vitamin K-dependent carboxylation process is affected decreasing the activity of MGP, a well-known inhibitor of ectopic calcification. Furthermore, independently from the primary gene defect, these pathways are similarly involved in fibroblasts from PXE and from β-thal PXE-like patients as well as in other diseases leading to ectopic calcification, thus suggesting that can be used as markers of pathologic mineralisation.  相似文献   

3.
4.
Cardiac complications including arrhythmia and especially atrial fibrillation (AF) are common causes of death in β-thalassemia patients. The main factor in the etiopathogenesis of these complications is iron overload, which results in increased oxidative stress. Although there is a known association between cardiac complications and iron overload in β-thalassemia patients, there is no comprehensive review on AF and excessive iron with a focus on oxidative stress in these patients. The aim of this article was to review the different aspects of AF in β-thalassemia patients with a focus on the prevention and treatment of AF by using iron chelators and/or anti-oxidants. AF in β-thalassemia patients is more common than in the general population. One of the most important causes of AF is cardiac iron overload and the harmful effects of increased oxidative stress. Iron-induced AF can be reversed by using an intensive iron chelation regimen. Based on a few experimental studies, the combination of iron chelators with some anti-oxidants, including NAC, vitamin C, and acetaminophen, can lead to improved cardiac protection. However, the effect of such combinations on cardiac arrhythmias should be further evaluated with animal and human studies.  相似文献   

5.
The present study was aimed to investigate the effect of thymoquinone (TQ) on pancreatic insulin levels, tissue antioxidant and lipid peroxidation (LPO) status in streptozotocin (STZ) nicotinamide (NA) induced diabetic rats. Diabetes was induced in experimental rats by a single intraperitoneal (i.p) injection of STZ (45 mg/kg b.w) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants Vitamin C, Vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of lipid peroxidation markers were observed in liver and kidney tissues of diabetic control rats as compared to control rats. In addition, diabetic rats showed an obvious decrease in pancreatic insulin levels. Administration of TQ (80 mg/kg b.w) to diabetic rats for 45 days significantly reversed the damage associated with diabetes. Biochemical findings were supported by histological studies. These results indicated that TQ exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its antioxidant properties.  相似文献   

6.
AimsDyslipidemia and oxidative stress are commonly present in patients during maintenance dialysis treatment. However, the significance of oxidized LDL (oxLDL) as a marker of oxidative stress in uremia is still unresolved. The aim of this study was to establish the role of oxLDL and oxLDL/LDL ratio as markers of lipoprotein abnormalities and oxidative stress in the dialyzed patients.Main methodsPlasma oxLDL level was measured by ELISA, and oxLDL/LDL ratio was calculated in 106 dialyzed patients and 20 controls. The linkages between oxLDL, oxLDL/LDL ratio and lipid profile and oxidative stress markers malondialdehyde (MDA) and Cu/Zn superoxide dismutase (Cu/Zn SOD) levels were also analyzed.Key findingsOxLDL levels and oxLDL/LDL ratio were similar in hemodialyzed patients and controls, whereas these parameters were lower in peritoneally dialyzed patients when compared to healthy individuals. In contrast, both MDA and Cu/Zn SOD levels were significantly higher in uremics than in controls. oxLDL and oxLDL/LDL ratio positively correlated with lipid profile (except of HDL), whereas there were no positive associations between these parameters and both MDA and Cu/Zn SOD. Multiple regression analysis confirmed that increased oxLDL/HDL and TC/HDL ratios and total cholesterol levels are the parameters which independently predicted oxLDL in dialyzed patients. In the case of oxLDL/LDL ratio, the independent variables were oxLDL/HDL ratio, total cholesterol and HDL levels.SignificanceoxLDL levels and oxLDL/LDL ratio seem to be the markers of lipoprotein abnormalities rather than the markers of oxidative stress in the population of dialyzed patients.  相似文献   

7.
8.
Mitochondrial oxidative damage is thought to play a key role in pancreatic β-cell failure in the pathogenesis of type 2 diabetes. Despite this, the potential of mitochondria-targeted antioxidants to protect pancreatic β-cells against oxidative stress has not yet been studied. Therefore, we investigated if mitochondria-targeted antioxidants protect pancreatic β-cells such as RINm5F and HIT-T15 cells against oxidative stress under glucotoxic and glucolipotoxic conditions. When β-cells were incubated under these conditions, the expression levels of mitochondrial electron transport chain complex subunits, mitochondrial antioxidant enzymes (such as MnSOD and Prx3), β-cell apoptosis, lipogenic enzymes (such as ACC, FAS and ABCA1), intracellular lipid accumulation, oxidative stress, ER stress, mitochondrial membrane depolarization, nuclear NF- κB and sterol regulatory element binding protein 1c (SREBP1c) were all increased, in parallel with decreases in intracellular ATP content, citrate synthase enzymatic activity and glucose-stimulated insulin secretion. These changes were consistent with elevated mitochondrial oxidative stress, and incubation with the mitochondria-targeted antioxidants, MitoTempol or Mitoquinone (MitoQ), prevented these effects. In conclusion, mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress, promote their survival, and increase insulin secretion in cell models of the glucotoxicity and glucolipotoxicity associated with Type 2 diabetes.  相似文献   

9.
The ability of a range of dietary flavonoids to inhibit low-density lipoprotein (LDL) oxidation in vitro was tested using a number of different methods to assess oxidative damage to LDL. Overall quercetin was the most effective inhibitor of oxidative damage to LDL in vitro. On this basis, a diet enriched with onions and black tea was selected for a dietary intervention study that compared the effect on the Cu2+ ion-stimulated lag-time of LDL oxidation ex vivo in healthy human subjects of a high flavonoid diet compared with a low flavonoid diet. No significant difference was found in the Cu2+ ion-stimulated lag-time of LDL oxidation ex vivo between the high flavonoid and low flavonoid dietary treatments (48 ± 1.6 min compared to 49 ± 2.1 min).  相似文献   

10.
The present study was to evaluate the effects of 20-OH ecdysone on hyperglycemia mediated oxidative stress in streptozotocin induced diabetic rats. Diabetes was induced in experimental rats by single intraperitoneal injection of STZ (45 mg/kg b.w.) dissolved in 0.1 mol/L citrate buffer (pH 4.5). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of non-enzymic antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic rats. Moreover, hepatic markers (aspartate aminotransferase and alanine aminotransferase) and renal markers (urea, creatinine) were significantly increased in diabetic rats as compared to control rats. Upon treatment with 20-OH ecdysone to diabetic rats showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that 20-OH ecdysone exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its hypoglycemic potential. The effect produced by the 20-OH ecdysone on various parameters was comparable to that of glibenclamide – an antidiabetic drug.  相似文献   

11.
Using electron paramagnetic resonance, the dose-dependence effect of dopamine on methemoglobin formation in erythrocytes of patients with Parkinson’s disease under the activation of oxidative stress induced by acrolein and the possibilities for the correction of this pathological process using carnosine in vitro experiments have been examined. It was shown that incubation of erythrocytes with 1.5 mM dopamine did not change the methemoglobin content, while incubation with 15 mM dopamine caused a two fold increase in the methemoglobin content compared to its initial level; 10 μM acrolein increased methemoglobin formation threefold. Administration of 15 mM dopamine and, after 1 h, 10 μM acrolein to the incubation system increased methemoglobin formation tenfold compared to its initial level. Preincubation of erythrocytes with 5 mM carnosine followed by acrolein addition prevented the increase in the methemoglobin content, while carnosine had no effect on methemoglobin formation induced by dopamine.  相似文献   

12.
In this study, we hypothesize that hydroxyurea could provide an additional benefit as a free radical scavenger and/or iron chelator in β-thalassemia patients with iron overload. Twenty-one β-thalassemia intermedia patients who presented between 3 and 17 years but later required regular blood transfusions were enrolled for hydroxyurea therapy for a year. Fourteen patients responded to the therapy with hemoglobin levels maintained above 7.5?g/dl without transfusions. Hydroxyurea was discontinued after 6 months in seven patients who did not respond to the therapy and had to be continued on regular blood transfusions. We observed a statistically significant decrease in serum ferritin levels from 4194?±?4850?ng/ml to 2129?±?2380?ng/ml among the responders and from 2955?±?2909?ng/ml to 2040?±?2432?ng/ml among the non-responders and statistically significant decrease in labile iron pool from 18678.7?±?10067.4 mean fluorescence intensity (MFI) to 14888.5?±?5284.0?MFI among responders and from 17986.3?±?9079.8?MFI to 15634.8?±?8976.9?MFI among the non-responders after therapy. Phosphatidylserine externalization also showed a statistically significant decrease from 44.2?±?22.2?MFI to 16.6?±?6.7?MFI among the responders and from 46.9?±?33.1?MFI to 39.8?±?7.4?MFI among the non-responders along with a statistically significant decrease in the levels of reactive oxygen species from 72.8?±?35.5?MFI to 29.0?±?8.3?MFI among the responders and from 80.9?±?41.4?MFI to 40.5?±?15.8?MFI among the non-responders after therapy. A statistically significant increase in reduced glutathione levels was also observed from 430.8?±?201.1?MFI to 715.5?±?292.4?MFI among the responders and from 359.6?±?165.6?MFI to 450.3?±?279.5?MFI among the non-responders after therapy. This suggests the possible additional role of hydroxyurea as a free radical scavenger and/or iron chelator but requires a larger study for substantiation.  相似文献   

13.
14.
15.
This study aimed at comparing antioxidant potential of fucoxanthin (FUCO) with β-carotene in relieving lipid peroxidation (Lpx) caused by retinol deficiency (RD) in rats. RD rats (n = 45) were fed a dose of either β-carotene (0.81 μmol) or FUCO (0.83 μmol). Plasma and liver lipid peroxide levels and activity of antioxidant enzymes catalase (CAT) and glutathione transferase (GST) were measured for 8 h. Results revealed that RD increased (P < 0.05) Lpx in plasma and liver by 34.3% and 19.4%, while the CAT activity in plasma (89%) and liver microsomes (91%) and GST in liver homogenate (31%) and liver microsomes (30%) were decreased (P < 0.05) compared to control (rats fed basal diet). FUCO suppressed (P < 0.05) the Lpx level by 7–85% (plasma) and 24–72% (liver) as compared to β-carotene (51–76%, 33–65%) over a period of 8 h. The activity of CAT in plasma and liver microsomes was higher (P < 0.05) in FUCO (90–95%, 85–93%) and β-carotene (87–96%, 79–91%) groups as compared to RD group. Similarly, the activity of GST in liver and its microsomes was also elevated (P < 0.05) in FUCO (44–51%, 22–51%) and β-carotene (19–54%, 30–43%) groups as compared to RD group. Results demonstrate that FUCO has greater potential than β-carotene in modulating Lpx, CAT, GST in plasma and liver of RD rats.  相似文献   

16.
Summary Enzymatic DNA amplification and polyacrylamide gel electrophoresis, which demonstrate different sizes of DNA fragments, were used to detect the common mutations causing -thalassemia and hemoglobin (Hb) E in Thai people. The 4-bp deletion at codons 41 and 42 can be detected directly by polyacrylamide gel electrophoresis and ethidium bromide staining. Whereas the nonsense mutations at codon 17 (AAG TAG) and Hb E (GAGAAG at codon 26) were detected after digestion of the amplified DNA with the enzymes MaeI and MnlI, respectively.  相似文献   

17.
The aim of this study is to show that protective effects of the main catechin (−)-epigallocatechin-3-gallate (EGCG) against capsaicin (CAP) induced oxidative stress and DNA damage in human blood in vitro. Superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde (MDA) level were studied in erythrocytes and leucocytes with increased concentrations of CAP. DNA damage in leucocytes was measured by the comet assay. Human blood cells have been administered with doses between 0 and 200 μM of CAP and/or EGCG (20 μM) for an hour at 37 °C. Treatment with CAP alone has increased the levels of MDA and decreased antioxidant enzymes in human blood cells. A significant increase in tail DNA%, mean tail length and tail moment indicating DNA damage has been observed at the highest dose of CAP treatment when compared to controls. Treatment of cells with CAP plus EGCG prevented CAP-induced changes in antioxidant enzyme activities and MDA level and mean tail lenght indicating DNA damage. A significant increase in mean tail lenght was observed at high doses of CAP. These data suggest that EGCG can prevent toxicity to human erythrocytes and leucocytes caused by CAP, only at low doses.  相似文献   

18.
Free radical production and lipid peroxidation are potentially important mediators in testicular physiology and toxicology. Polychlorinated biphenyls (PCBs) are global environmental contaminants that cause disruption of the endocrine system in human and animals. The present study was conducted to elucidate the protective role of vitamin C and E against Aroclor 1254-induced changes in Leydig cell steroidogenesis and antioxidant system. Adult male rats were dosed for 30 days with daily intraperitoneal (ip) injection of 2 mg/kg Aroclor or vehicle (corn oil). One group of rats was treated with vitamin C (100 mg/kg bw/day) while the other group was treated with vitamin E (50 mg/kg bw/day) orally, simultaneously with Aroclor 1254 for 30 days. One day after the last treatment, animals were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin (PRL), triiodothyronine (T3), thyroxine (T4), testosterone and estradiol. Testes were quickly removed and Leydig cells were isolated in aseptic condition. Purity of Leydig cells was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining method. Purified Leydig cells were used for quantification of cell surface LH receptors and steroidogenic enzymes such as cytochrome P450 side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β- HSD). Leydig cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamyl transpeptidase (γ-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. Aroclor 1254 treatment significantly reduced the serum LH, TSH, PRL, T3, T4, testosterone and estradiol. In addition to this, Leydig cell surface LH receptors, activities of the steroidogenic enzymes such as cytochrome P450scc, 3β-HSD, 17β-HSD, antioxidant enzymes SOD, CAT, GPX, GR, γ-GT, GST and non-enzymatic antioxidants such as vitamin C and E were significantly diminished whereas, LPO and ROS were markedly elevated. However, the simultaneous administration of vitamin C and E in Aroclor 1254 exposed rats resulted a significant restoration of all the above-mentioned parameters to the control level. These observations suggest that vitamin C and E have ameliorative role against adverse effects of PCB on Leydig cell steroidogenesis.  相似文献   

19.
20.
Oxidative stress caused as a result of iron overload is implicated in clinical manifestation of beta-thalassemia/haemoglobin E (β-Thal/HbE). In this study, we investigated the cellular adaptation against oxidative stress in β-Thal/HbE patients. Twenty-four paediatric β-Thal/HbE patients and 22 healthy controls were recruited in the study. Blood samples from patients exhibited iron overload, elevation of lipid peroxidation, and marked diminution in the reduced glutathione (GSH) level. However, expression of glutamate-cysteine ligase catalytic (GCLC) subunit, a key enzyme in GSH biosynthesis, was up-regulated when compared with that in controls. GCLC protein levels were correlated with serum iron. There was an enhanced binding activity of the oligonucleotide probe for Nrf2-driven antioxidant response element (ARE) to nuclear protein from blood mononuclear cells of thalassemia subjects. In conclusion, β-Thal/HbE patients exhibit elevated plasma levels of GCLC expression and Nrf2-ARE binding activity, which may account for their adaptive survival response to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号