首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ataxia telangiectasia mutated protein (ATM) is a member of the phosphatidylinositol‐3 kinase (PI3K) family, which has a role in the cellular response to DNA double‐strand breaks (DSBs). In the present study, we evaluated the role of ATM in cell‐cycle control in dopaminergic rat neuroblastoma B65 cells. For this purpose, ATM activity was either inhibited pharmacologically with the specific inhibitor KU‐55933, or the ATM gene was partially silenced by transfection with small interfering RNA (siRNA). Our data indicate that although ATM inhibition did not affect the cell cycle, both treatments specifically decreased the levels of cyclin A and retinoblastoma protein (pRb), phosphorylated at Ser780. Furthermore, ATM inhibition decreased the active form of p53, which is phosphorylated at Ser15, and also decreased Bax and p21 expression. Using H2O2 as a positive control of DSBs, caused a rapid pRb phosphorylation, this was prevented by KU‐55933 and siRNA treatment. Collectively, our data demonstrate how a new molecular network on ATM regulates the cell cycle through the control of pRb phosphorylation. These findings support a new target of ATM. J. Cell. Biochem. 110: 210–218, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Ataxia telangiectasia (AT) is caused by mutational inactivation of the ataxia telangiectasia mutated (Atm) gene, which is involved in DNA repair. Increased oxidative stress has been shown in human AT cells and neuronal tissues of Atm-deficient mice. Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme and protects cells against oxidative stress. The purpose of this study is to determine whether ATM induces antioxidant enzyme HO-1 and protects cells from oxidative stress-mediated apoptosis by driving the activation of PKC-δ and NF-κB, by increasing cell viability, and by downregulating DNA fragmentation and apoptotic indicators (apoptosis-inducing factor and cleaved caspase-3). AT fibroblasts stably transfected with human full-length ATM cDNA (YZ5 cells) or the empty vector (MOCK cells) were treated with H2O2 as a source of reactive oxygen species (ROS). As a result, transfection with ATM inhibited ROS-induced cell death and DNA fragmentation in MOCK cells. Transfection with ATM induced expression of HO-1 which was mediated by PKC-δ and NF-κB in H2O2-treated MOCK cells. ZnPP, an HO-1 inhibitor, and transfection with HO-1 siRNA increased ROS levels and apoptosis, whereas hemin, an HO-1 activator, reduced ROS levels and apoptosis in H2O2-treated YZ5 cells. Rottlerin, a PKC-δ inhibitor, inhibited NF-κB activation and HO-1 expression in H2O2-treated YZ5 cells. MOCK cells showed increased cell death, DNA fragmentation, and apoptotic indicators compared to YZ5 cells exposed to H2O2. In addition, transfection with p65 siRNA increased ROS levels and DNA fragmentation, but decreased HO-1 protein levels in H2O2-treated YZ5 cells. In conclusion, ATM induces HO-1 expression via activation of PKC-δ and NF-κB and inhibits oxidative stress-induced apoptosis. A loss of HO-1 induction may explain why AT patients are vulnerable to oxidative stress.  相似文献   

3.
4.

Background

Cyclin D1 is immediately down-regulated in response to reactive oxygen species (ROS) and implicated in the induction of cell cycle arrest in G2 phase by an unknown mechanism. Either treatment with a protease inhibitor alone or expression of protease-resistant cyclin D1 T286A resulted in only a partial relief from the ROS-induced cell cycle arrest, indicating the presence of an additional control mechanism.

Methods

Cells were exposed to hydrogen peroxide (H2O2), and analyzed to assess the changes in cyclin D1 level and its effects on cell cycle processing by kinase assay, de novo synthesis, gene silencing, and polysomal analysis, etc.

Results

Exposure of cells to excessive H2O2 induced ubiquitin-dependent proteasomal degradation of cyclin D1, which was subsequently followed by translational repression. This dual control mechanism was found to contribute to the induction of cell cycle arrest in G2 phase under oxidative stress. Silencing of an eIF2α kinase PERK significantly retarded cyclin D1 depletion, and contributed largely to rescuing cells from G2 arrest. Also the cyclin D1 level was found to be correlated with Chk1 activity.

Conlclusions

In addition to an immediate removal of the pre-existing cyclin D1 under oxidative stress, the following translational repression appear to be required for ensuring full depletion of cyclin D1 and cell cycle arrest. Oxidative stress-induced cyclin D1 depletion is linked to the regulation of G2/M transit via the Chk1–Cdc2 DNA damage checkpoint pathway.

General significance

The control of cyclin D1 is a gate keeping program to protect cells from severe oxidative damages.  相似文献   

5.
The role of the kinase ataxia-telangiectasia mutated (ATM), a well-known protein engaged in DNA damage repair, in the regulation of neuronal responses to oxidative stress remains unexplored. Thus, the neuroprotective efficacy of KU-55933, a potent inhibitor of ATM, against cell damage evoked by oxidative stress (hydrogen peroxide, H2O2) has been studied in human neuroblastoma SH-SY5Y cells and compared with the efficacy of this agent in models of doxorubicin (Dox)- and staurosporine (St)-evoked cell death. KU-55933 inhibited the cell death induced by H2O2 or Dox but not by St in undifferentiated (UN-) and retinoic acid-differentiated (RA)-SH-SY5Y cells, with a more pronounced effect in the latter cell phenotype. Furthermore, this ATM inhibitor attenuated the Dox- but not H2O2-induced caspase-3 activity in both UN- and RA-SH-SY5Y cells. Although KU-55933 inhibited the H2O2- and Dox-induced activation of ATM, it attenuated the toxin-induced phosphorylation of the proteins H2AX and p53 only in the latter model of cell damage. Moreover, the ATM inhibitor prevented the H2O2-evoked increases in calpain and cathepsin D activity and attenuated cell damage to a similar degree as inhibitors of calpain (MDL28170) and cathepsin D (pepstatin A). Finally, we confirmed the neuroprotective potential of KU-55933 against the H2O2- and Dox-evoked cell damage in primary mouse cerebellar granule cells and in the mouse hippocampal HT-22 cell line. Altogether, our results extend the neuroprotective portfolio of KU-55933 to a model of oxidative stress, with this effect not involving inhibition of the γH2AX/p-p53/caspase-3 pathway and instead associated with the attenuation of calpain and cathepsin D activity.  相似文献   

6.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.  相似文献   

7.
Progranulin (PGRN) is a widely expressed multifunctional protein, involved in regulation of cell growth and cell cycle progression with a possible involvement in neurodegeneration. We looked for PGRN regulation in three different human neuroblastoma cell lines, following exposure to two different stimuli commonly associated to neurodegeneration: hypoxia and oxidative stress. For gene and protein expression analysis we carried out a quantitative RT-PCR and western blotting analysis. We show that PGRN is strongly up-regulated by hypoxia, through the mitogen-actived protein kinase (MAPK)/extracellular signal-regulated kinase (MEK) signaling cascade. PGRN is not up-regulated by H2O2-induced oxidative stress. These results suggest that PGRN in the brain could exert a protective role against hypoxic stress, one of principal risk factors involved in frontotemporal dementia pathogenesis.  相似文献   

8.
The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing two or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSB s is inhibited in the presence of H2O2 because oxidation blocks the ability of MRN to bind to DNA . However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSB s and oxidative stress.Key words: ATM, DNA repair, double-strand break, oxidative stress, ROS  相似文献   

9.
The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing 2 or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSBs is inhibited in the presence of H2O2 because oxidationblocks the ability of MRN to bind to DNA. However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSBs and oxidative stress.  相似文献   

10.
Oxidative stress is recognized as one of the pathogenic mechanisms involved in neurodegenerative disease. However, recent evidence has suggested that regulation of cellular fate in response to oxidative stress appears to be dependent on the stress levels. In this study, using HT22 cells, we attempted to understand how an alteration in the oxidative stress levels would influence neuronal cell fate. HT22 cell viability was reduced with exposure to high levels of oxidative stress, whereas, low levels of oxidative stress promoted cell survival. Erk1/2 activation induced by a low level of oxidative stress played a role in this cell protective effect. Intriguingly, subtoxic level of H2O2 induced expression of a growth factor, progranulin (PGRN), and exogenous PGRN pretreatment attenuated HT22 cell death induced by high concentrations of H2O2 in Erk1/2-dependent manner. Together, our study indicates that two different cell protection mechanisms are activated by differing levels of oxidative stress in HT22 cells.  相似文献   

11.
12.
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.  相似文献   

13.
Oxidative stress, caused by reactive oxygen species (ROS), is a major contributor to inflammatory bowel disease (IBD)‐associated neoplasia. We mimicked ROS exposure of the epithelium in IBD using non‐tumour human colonic epithelial cells (HCEC) and hydrogen peroxide (H2O2). A population of HCEC survived H2O2‐induced oxidative stress via JNK‐dependent cell cycle arrests. Caspases, p21WAF1 and γ‐H2AX were identified as JNK‐regulated proteins. Up‐regulation of caspases was linked to cell survival and not, as expected, to apoptosis. Inhibition using the pan‐caspase inhibitor Z‐VAD‐FMK caused up‐regulation of γ‐H2AX, a DNA‐damage sensor, indicating its negative regulation via caspases. Cell cycle analysis revealed an accumulation of HCEC in the G1‐phase as first response to oxidative stress and increased S‐phase population and then apoptosis as second response following caspase inhibition. Thus, caspases execute a non‐apoptotic function by promoting cells through G1‐ and S‐phase by overriding the G1/S‐ and intra‐S checkpoints despite DNA‐damage. This led to the accumulation of cells in the G2/M‐phase and decreased apoptosis. Caspases mediate survival of oxidatively damaged HCEC via γ‐H2AX suppression, although its direct proteolytic inactivation was excluded. Conversely, we found that oxidative stress led to caspase‐dependent proteolytic degradation of the DNA‐damage checkpoint protein ATM that is upstream of γ‐H2AX. As a consequence, undetected DNA‐damage and increased proliferation were found in repeatedly H2O2‐exposed HCEC. Such features have been associated with neoplastic transformation and appear here to be mediated by a non‐apoptotic function of caspases. Overexpression of upstream p‐JNK in active ulcerative colitis also suggests a potential importance of this pathway in vivo.  相似文献   

14.
15.
16.
Oxidative stress induced by hydrogen peroxide (H2O2) may contribute to the pathogenesis of ischemic-reperfusion injury in the heart. For the purpose of investigating directly the injury potential of H2O2 on heart muscle, a cellular model of H2O2-induced myocardial oxidative stress was developed. This model employed primary monolayer cultures of intact, beating neonatal-rat cardiomy-ocytes and discrete concentrations of reagent H2O2 in defined, supplement-free culture medium. Cardiomyocytes challenged with H2O2 readily metabolized it such that the culture content of H2O2 diminished over time, but was not depleted. The consequent H2O2-induced oxidative stress caused lethal sarcolemmal disruption (as measured by lactate dehydrogenase release), and cardiomyocyte integrity could be preserved by catalase. During oxidative stress, a spectrum of cellular derangements developed, including membrane phospholipid peroxidation, thiol oxidation, consumption of the major chain-breaking membrane antiperoxidant (α-tocopherol), and ATP loss. No net change in the protein or phospholipid contents of cardiomyocyte membranes accompanied H2O2-induced oxidative stress, but an increased turnover of these membrane constituents occurred in response to H2O2. Development of lethal cardiomyocyte injury during H2O2-induced oxidative stress did not require the presence of H2O2 itself; a brief “pulse” exposure of the cardiomyocytes to H2O2 was sufficient to incite the pathogenic mechanism leading to cell disruption. Cardiomyocyte disruption was dependent upon an intracellular source of redox-active iron and the iron-dependent transformation of internalized H2O2 into products (e.g., the hydroxyl radical) capable of initiating lipid peroxidation, since iron chelators and hydroxyl-radical scavengers were cytoprotective. The accelerated turnover of cardiomyocyte-membrane protein and phospholipid was inhibited by antiperoxidants, suggesting that the turnover reflected molecular repair of oxidized membrane constituents. Likewise, the consumption of α-tocopherol and the oxidation of cellular thiols appeared to be epiphenomena of peroxidation. Antiperoxidant interventions coordinately abolished both H2O2-induced lipid peroxidation and sarcolemmal disruption, demonstrating that an intimate pathogenic relationship exists between sarcolemmal peroxidation and lethal compromise of cardiomyocyte integrity in response to H2O2-induced oxidative stress. Although sarcolemmal peroxidation was causally related to cardiomyocyte disruption during H2O2-induced oxidative stress, a nonperoxidative route of H2O2 cytotoxicity was also identified, which was expressed in the complete absence of cardiomyocyte-membrane peroxidation. The latter mode of H2O2-induced cardiomyocyte injury involved ATP loss such that membrane peroxidation and cardiomyocyte disruption on the one hand and cellular de-energization on the other could be completely dissociated. The cellular pathophysiology of H2O2 as a vectorial signal for cardiomyocyte necrosis that “triggers” irreversible peroxidative disruption of the sarcolemma has implications regarding potential mechanisms of oxidative injury in the postischemic heart.  相似文献   

17.
Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2.Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out.Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed.Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.  相似文献   

18.
Oxidative stress-mediated cell death in cardiomyocytes reportedly plays an important role in many cardiac pathologies. Our previous report demonstrated that mitochondrial SIRT3 plays an essential role in mediating cell survival in cardiac myocytes, and that resveratrol protects cardiomyocytes from oxidative stress-induced apoptosis by activating SIRT3. However, the exact mechanism by which SIRT3 prevents oxidative stress remains unknown. Here, we show that exposure of H9c2 cells to 50 μM H2O2 for 6 h caused a significant increase in cell death and the down-regulation of SIRT3. Reactive oxygen species (ROS)-mediated NF-κB activation was involved in this SIRT3 down-regulation. The SIRT3 activator, resveratrol, which is considered an important antioxidant, protected against H2O2-induced cell death, whereas the SIRT inhibitor, nicotinamide, enhanced cell death. Moreover, resveratrol negatively regulated H2O2-induced NF-κB activation, whereas nicotinamide enhanced H2O2-induced NF-κB activation. We also found that SOD2, Bcl-2 and Bax, the downstream genes of NF-κB, were involved in this pathological process. These results suggest that SIRT3 protects cardiomyocytes exposed to oxidative stress from apoptosis via a mechanism that may involve the NF-κB pathway.  相似文献   

19.
In vitro fertilized (IVF) embryos show both cell cycle and developmental arrest. We previously showed oxidative damage activates the ATM?→?Chk1?→?Cdc25B/Cdc25C cascade to mediate G2/M cell cycle arrest for repair of hydrogen peroxide (H2O2)-induced oxidative damage in sperm. However, the mechanisms underlying the developmental delay of zygotes are unknown. To develop a model of oxidative-damaged zygotes, we treated mouse zygotes with different concentrations of H2O2 (0, 0.01, 0.02, 0.03, 0.04, 0.05 mM), and evaluated in vitro zygote development, BrdU incorporation to detect the duration of S phase. We also examined reactive oxygen species level and used immunofluorescence to detect activation of γH2AX, Cdc2, and Cdc25. Oxidatively damaged zygotes showed a delay in G2/M phase and produced a higher level of ROS. At the same time, γH2AX was detected in oxidatively damaged zygotes as well as phospho-Cdc25B (Ser323), phospho-Cdc25C (Ser216), and phospho-Cdc2 (Tyr15). Our study indicates that oxidative stress-induced DNA damage of mouse zygotes triggers the cell cycle checkpoint, which results in G2/M cell cycle arrest, and that phospho-Cdc25B (Ser323), phospho-Cdc25C (Ser216), and phospho-Cdc2 (Tyr15) participate in activating the G2/M checkpoint.  相似文献   

20.
Silent information regulator 1 (SIRT1), a class III histone deacetylase, retards aging and plays roles in cellular oxidative stress injury (OSI). However, the biological context in which SIRT1 promotes oxidative injury is not fully understood. Here, we show that SIRT1 essentially mediates hydrogen peroxide (H2O2)-induced cytotoxicity in human umbilical vein endothelial cell (HUVEC). In HUVECs, SIRT1 protein expression was significantly increased in a dose-dependent manner after H2O2 treatment, whereas the acetylation levels of the NF-κB p65 subunit and p53 were decreased. EX527 (a specific SIRT1 inhibitor) conferred protection to the HUVECs against H2O2, as indicated by an improved cell viability, adhesion, an enhanced migratory ability, a decreased apoptotic index, decreased reactive oxygen species (ROS) production and reductions in several biochemical parameters. Immunofluorescence and Western blot analyses demonstrated that H2O2 treatment up-regulated SIRT1, phosphorylated-JNK (p-JNK), p-p38MAPK, and p-ERK expression. EX527 pretreatment reversed these effects on SIRT1, p-JNK, and p-p38MAPK but further increased the p-ERK levels. Similar results were confirmed in SIRT1 siRNA experiments. In summary, SIRT1 signaling pathway inhibition imparts protection against acute endothelial OSI, and modulation of MAPKs (JNK, p38MAPK, and ERK) may be involved in the protective effect of SIRT1 inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号