首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The acrosome reaction, the first step of the fertilization, is induced by calcium influx through Canonical Transient Receptor Potential channels (TRPC). The molecular nature of TRPC involved is still a debated question. In mouse, TRPC2 plays the most important role and is responsible for the calcium plateau. However, TRPC1 and TRPC5 are also localized in the acrosomal crescent of the sperm head and may participate in calcium signaling, especially in TRPC2-deficient mice. Activation of TRPC channels is an unresolved question in germ and somatic cells as well. In particular, in sperm, little is known concerning the molecular events leading to TRPC2 activation. From the discovery of IP3R binding domains on TRPC2, it has been suggested that TRPC channel activation may be due to a conformational coupling between IP3R and TRPC channels. Moreover, recent data demonstrate that junctate, an IP3R associated protein, participates also in the gating of some TRPC. In this study, we demonstrate that junctate is expressed in sperm and co-localizes with the IP3R in the acrosomal crescent of the anterior head of rodent sperm. Consistent with its specific localization, we show by pull-down experiments that junctate interacts with TRPC2 and TRPC5 but not with TRPC1. We focused on the interaction between TRPC2 and junctate, and we show that the N-terminus of junctate interacts with the C-terminus of TRPC2, both in vitro and in a heterologous expression system. We show that junctate binds to TRPC2 independently of the calcium concentration and that the junctate binding site does not overlap with the common IP3R/calmodulin binding sites. TRPC2 gating is downstream phospholipase C activation, which is a key and necessary step during the acrosome reaction. TRPC2 may then be activated directly by diacylglycerol (DAG), as in neurons of the vomeronasal organ. In the present study, we investigated whether DAG could promote the acrosome reaction. We found that 100 microM OAG, a permeant DAG analogue, was unable to trigger the acrosome reaction. Altogether, these results provide a new hypothesis concerning sperm TRPC2 gating: TRPC2 activation may be due to modifications of its interaction with both junctate and IP3R, induced by depletion of calcium from the acrosomal vesicle.  相似文献   

2.
Polarized Ca2+ signals in secretory epithelial cells are determined by compartmentalized localization of Ca2+ signaling proteins at the apical pole. Recently the ER Ca2+ sensor STIM1 (stromal interaction molecule 1) and the Orai channels were shown to play a critical role in store‐dependent Ca2+ influx. STIM1 also gates the transient receptor potential‐canonical (TRPC) channels. Here, we asked how cell stimulation affects the localization, recruitment and function of the native proteins in polarized cells. Inhibition of Orai1, STIM1, or deletion of TRPC1 reduces Ca2+ influx and frequency of Ca2+ oscillations. Orai1 localization is restricted to the apical pole of the lateral membrane. Surprisingly, cell stimulation does not lead to robust clustering of native Orai1, as is observed with expressed Orai1. Unexpectedly, cell stimulation causes polarized recruitment of native STIM1 to both the apical and lateral regions, thus to regions with and without Orai1. Accordingly, STIM1 and Orai1 show only 40% colocalization. Consequently, STIM1 shows higher colocalization with the basolateral membrane marker E‐cadherin than does Orai1, while Orai1 showed higher colocalization with the tight junction protein ZO1. TRPC1 is expressed in both apical and basolateral regions of the plasma membrane. Co‐IP of STIM1/Orai1/IP3 receptors (IP3Rs)/TRPCs is enhanced by cell stimulation and disrupted by 2‐aminoethoxydiphenyl borate (2APB). The polarized localization and recruitment of these proteins results in preferred Ca2+ entry that is initiated at the apical pole. These findings reveal that in addition to Orai1, STIM1 likely regulates other Ca2+ permeable channels, such as the TRPCs. Both channels contribute to the frequency of [Ca2+] oscillations and thus impact critical cellular functions.  相似文献   

3.
Phosphatase and tensin homologue (PTEN) is a dual lipid-protein phosphatase that catalyzes the conversion of phosphoinositol 3,4,5-triphosphate to phosphoinositol 4,5-bisphosphate and thereby inhibits PI3K-Akt-dependent cell proliferation, migration, and tumor vascularization. We have uncovered a previously unrecognized role for PTEN in regulating Ca2+ entry through transient receptor potential canonical channel 6 (TRPC6) that does not require PTEN phosphatase activity. We show that PTEN tail-domain residues 394–403 permit PTEN to associate with TRPC6. The inflammatory mediator thrombin promotes this association. Deletion of PTEN residues 394–403 prevents TRPC6 cell surface expression and Ca2+ entry. However, PTEN mutant, C124S, which lacks phosphatase activity, did not alter TRPC6 activity. Thrombin failed to increase endothelial monolayer permeability in the endothelial cells, transducing the Δ394–403 PTEN mutant. Paradoxically, we also show that thrombin failed to induce endothelial cell migration and tube formation in cells transducing the Δ394–403 PTEN mutant. Our results demonstrate that PTEN, through residues 394–403, serves as a scaffold for TRPC6, enabling cell surface expression of the channel. Ca2+ entry through TRPC6 induces an increase in endothelial permeability and directly promotes angiogenesis. Thus, PTEN is indicated to play a role beyond suppressing PI3K signaling.  相似文献   

4.
The present study was initiated to gain some information about the tissue distribution of transient receptor potential proteins of C-type (TRPC), a family of voltage-independent cation channels, at the beginning of neurogenesis in the telencephalon of embryonic mice. The mRNAs of all known TRPCs (TRPC1–TRPC7) could be found in the cortex at E13. TRPC1, TRPC3 and TRPC5 were the main isoforms, whereas the mRNAs for TRPC2, TRPC4, TRPC6 and TRPC7 were less abundant. The distribution throughout the cortical wall of TRPC1, TRPC3 and TRPC6 was studied by means of immuno-histochemistry. The data collected pointed to a heterogeneous expression of the channels. Three groups were identified. The first one comprises TRPC1, specifically found in the preplate but only in some post-mitotic neurons. It was mainly observed in a subset of cells distinct from the Cajal-Retzius cells. The second group is composed of TRPC3. It was found in non-neuronal cells and also in dividing (5-bromo-2′-deoxyuridine-positive) cells, indicating that TRPC3 is present in precursor cells. The third group contains TRPC6 detected in neuronal and in dividing non-neuronal cells. Double immunostaining experiments showed that TRPC3-positive cells also express TRPC6. Collectively, this report highlights a specific TRPC expression pattern in the immature cortical wall. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. S. Boisseau and C. Kunert-Keil have contributed equally to this work.  相似文献   

5.
The receptor agonist-mediated hydrolysis of phosphoinositides and production of prostacyclin were studied in murine cerebral endothelial cells (MCEC). Of 11 neurotransmitters and neuromodulators examined, carbachol, noradrenaline (NE), bradykinin, and thrombin significantly increased 3H-inositol phosphate accumulation in the presence of LiCl (20 mM). The maximal stimulation of [3H]inositol monophosphate ([3H]IP1) reached approximately 11, 11, seven, and four times the basal levels for carbachol, NE, bradykinin, and thrombin, respectively. The EC50 values of IP1 accumulation for carbachol and NE were 34 and 0.16 microM, respectively. The muscarinic antagonists, atropine and pirenzepine, blocked the carbachol-induced IP1 accumulation with Ki values of 0.3 and 30 nM, respectively. The adrenergic antagonist, prazosin, blocked NE-induced IP1 accumulation with a Ki of 0.1 nM. The calcium ionophore A23187, histamine, glutamate, vasopressin, serotonin, platelet activating factor, and substance P did not stimulate IP1 accumulation. A23187, bradykinin, and thrombin stimulated prostacyclin release to approximately four, four, and two times the basal levels, respectively, whereas carbachol and NE had little effect upon prostacyclin release. These results suggest that the activation of phospholipase C and of phospholipase A2 in MCEC are regulated separately.  相似文献   

6.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

7.
Ca2+ signaling is essential for bone homeostasis and skeletal development. Here, we show that the transient receptor potential canonical 1 (TRPC1) channel and the inhibitor of MyoD family, I-mfa, function antagonistically in the regulation of osteoclastogenesis. I-mfa null mice have an osteopenic phenotype characterized by increased osteoclast numbers and surface, which are normalized in mice lacking both Trpc1 and I-mfa. In vitro differentiation of pre-osteoclasts derived from I-mfa-deficient mice leads to an increased number of mature osteoclasts and higher bone resorption per osteoclast. These parameters return to normal levels in osteoclasts derived from double mutant mice. Consistently, whole cell currents activated in response to the depletion of intracellular Ca2+ stores are larger in pre-osteoclasts derived from I-mfa knock-out mice compared with currents in wild type mice and normalized in cells derived from double mutant mice, suggesting a cell-autonomous effect of I-mfa on TRPC1 in these cells. A new splice variant of TRPC1 (TRPC1ϵ) was identified in early pre-osteoclasts. Heterologous expression of TRPC1ϵ in HEK293 cells revealed that it is unique among all known TRPC1 isoforms in its ability to amplify the activity of the Ca2+ release-activated Ca2+ (CRAC) channel, mediating store-operated currents. TRPC1ϵ physically interacts with Orai1, the pore-forming subunit of the CRAC channel, and I-mfa is recruited to the TRPC1ϵ-Orai1 complex through TRPC1ϵ suppressing CRAC channel activity. We propose that the positive and negative modulation of the CRAC channel by TRPC1ϵ and I-mfa, respectively, fine-tunes the dynamic range of the CRAC channel regulating osteoclastogenesis.  相似文献   

8.
In an approach toward the identification of hitherto unknown proteins involved in the function of the blood-brain barrier, we constructed a pig brain microvessel-derived cDNA library that is enriched in blood-brain barrier specific sequences by means of subtractive cloning. Sequence analysis of selected clones revealed that one of the cDNAs encoded porcine apolipoprotein (apo) A-1. The identity of apo A-1 mRNA was further confirmed by in vitro translation of RNA from brain microvascular endothelial cells and subsequent immunoprecipitation with an antibody against human apo A-1. We further investigated the expression of apo A-1 mRNA in several tissues and in endothelial cells of the pig. It is shown that cultured brain microvascular endothelial cells provide an in vitro model to study the expression and function of apo A-1 in the microvasculature of the brain.  相似文献   

9.
Disturbances in Ca2+ homeostasis have been implicated in a variety of neuropathological conditions including Parkinson's disease (PD). However, the importance of store-operated Ca2+ entry (SOCE) channels in PD remains to be investigated. In the present study, we have scrutinized the significance of TRPC1 in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdro-pyridine (MPTP)-induced PD using C57BL/6 animal model and PC12 cell culture model. Both sub-acute and sub-chronic treatments of MPTP significantly reduced TRPC1, and tyrosine hydroxylase levels, but not TRPC3, along with increased neuronal death. Furthermore, MPTP induces mitochondrial dysfunction, which was associated with reduced mitochondrial membrane potential, decreased level of Bcl2, Bcl-xl, and an altered Bcl-xl/Bax ratio thereby initiating apoptosis. Importantly, TRPC1 overexpression in PC12 cells showed significant protection against MPP+ induced neuronal apoptosis, which was attributed to the restoration of cytosolic Ca2+ and preventing loss of mitochondrial membrane potential. Silencing of TRPC1 or addition of TRPC1 channel blockers decreased mitochondrial membrane potential, whereas activation of TRPC1 restored mitochondrial membrane potential in cells overexpressing TRPC1. TRPC1 overexpression also inhibited Bax translocation to the mitochondria and thereby prevented cytochrome c release and mitochondrial-mediated apoptosis. Overall, these results provide compelling evidence for the role of TRPC1 in either onset/progression of PD and restoration of TRPC1 levels could limit neuronal degeneration in MPTP mediated PD.  相似文献   

10.
There is a body of evidence suggesting that Ca2+ handling proteins assemble into signaling complexes required for a fine regulation of Ca2+ signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca2+-permeable channels mediating Ca2+ entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP3Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP3Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP3Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP3R, but not with the type II IP3R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP3R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP3R, as well as Ca2+ release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP3R complex, where TRPC3 plays a central role. This Ca2+ signaling complex might be important for both agonist-induced Ca2+ release and entry.  相似文献   

11.
During myogenesis, a long splice variant of STIM1, called STIM1L is getting expressed, while the level of STIM1 remains constant. Previous work demonstrated that STIM1L is more efficient in eliciting store-operated Ca2+ entry (SOCE), but no current analysis of the channel(s) activated by this new STIM1L isoform was performed until now. In this study, we investigate the ionic channel(s) activated by STIM1L and whether differences exist between the two STIM1 isoforms, using HEK-293 T cells as a model system. Our data show that STIM1 and STIM1L activate Orai1 channel but also the endogenously expressed TRPC1. The channel activation occurs in two steps, with first Orai1 activation followed, in a subset of cells, by TRPC1 opening. Remarkably, STIM1L more frequently activates TRPC1 and preferentially interacts with TRPC1. In low intracellular Ca2+ buffering condition, the frequency of TRPC1 opening increases significantly, strongly suggesting a Ca2+-dependent channel activation. The ability of STIM1L to open Orai1 appears decreased compared to STIM1, which might be explained by its stronger propensity towards TRPC1. Indeed, increasing the amount of STIM1L results in an enhanced Orai1 current. The role of endogenous TRPC1 in STIM1- and STIM1L-induced SOCE was confirmed by Ca2+ imaging experiments. Overall, our findings provide a detailed analysis of the channels activated by both STIM1 isoforms, revealing that STIM1L is more prone to open TRPC1, which might explain the larger SOCE elicited by this isoform.  相似文献   

12.
13.
内皮祖细胞(EPCs)研究进展   总被引:2,自引:0,他引:2  
组织工程血管以及组织工程化组织的血管化因目前内皮种子细胞扩增能力和生物活力的不足而受到限制。EPCs(内皮祖细胞)是内皮细胞的前体细胞。在胚胎期,内皮细胞系与造血细胞系来源于血岛内共同的祖先细胞;出生后,EPCs存在于骨髓,并可被转移至外周血,参与缺血组织的血管重建和血管的内膜化。因此EPCs有望成为今后组织工程内皮种子细胞的重要来源。  相似文献   

14.
目的:探讨从小鼠骨髓中分离、培养、诱导分化及鉴定两种内皮祖细胞的方法,为进一步研究和临床应用奠定基础。方法:密度梯度离心法分离小鼠骨髓单个核细胞,接种于内皮祖细胞条件培养基,通过贴壁培养法培养出早期内皮祖细胞和晚期内皮祖细胞,并在0 d、6 d、10 d流式鉴定早期内皮祖细胞,在第8周流式鉴定晚期内皮祖细胞。结果:通过体外贴壁扩增培养,从小鼠骨髓细胞中成功培养出EEPC(早期内皮祖细胞)和EOC(晚期内皮祖细胞),表达CD34+/CD133+/VEGFR2+的EEPC比例从最初的0.08%能够增长至70%;EOC大约出现于3-4周,5-8周时呈现指数增长,具有典型的内皮细胞鹅卵石样形态,表达CD31、VEGFR2等内皮细胞表面标志而不表达CD34、CD133等干细胞表面标志。结论:确立了内皮祖细胞体外分离培养和诱导分化的实验方法,为进一步研究奠定基础。  相似文献   

15.
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.  相似文献   

16.
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.  相似文献   

17.
内皮祖细胞的分离培养与鉴定   总被引:2,自引:0,他引:2  
内皮祖细胞的分离方法有免疫磁珠分离法、淋巴细胞分离液分离法(1.077)和差速贴壁法,这3种方法已被人们广泛使用,均可分离到一定的目的细胞。分离到的目的细胞在培养过程中逐渐分化、成熟、发育为内皮细胞。在内皮细胞和内皮祖细胞的鉴别区分,使用CD34+/CD133+/KDR+鉴定为内皮祖细胞,同时使用内皮祖细胞吞噬D il-ac-LDLFITC-UEA双阳性的方法也可鉴定为内皮祖细胞。  相似文献   

18.
19.
Mitochondria in endothelial cells remodel morphologically when supraphysiological cyclic stretch is exerted on the cells. During remodeling, mitochondria become shorter, but how they do so remains elusive. Drp1 is a regulator of mitochondrial morphologies. It shortens mitochondria by shifting the balance from mitochondrial fusion to fission. In this study, we hypothesized that Drp1 activation is involved in mitochondrial remodeling under supraphysiological cyclic stretch. To verify the involvement of Drp1, its activation was first quantified with Western blotting, but Drp1 was not significantly activated in endothelial cells under supraphysiological cyclic stretch. Next, Drp1 activation was inhibited with Mdivi-1, but this did not inhibit mitochondrial remodeling. Intracellular Ca2+ increase activates Drp1 through calcineurin. First, we inhibited the intracellular Ca2+ increase with Gd3+ and thapsigargin, but this did not inhibit mitochondrial remodeling. Next, we inhibited calcineurin with cyclosporin A, but this also did not inhibit mitochondrial remodeling. These results indicate that mitochondrial remodeling under supraphysiological cyclic stretch is independent of Drp1 activation. In endothelial cells under supraphysiological cyclic stretch, reactive oxygen species (ROS) are generated. Mitochondrial morphologies are remodeled by ROS generation. When ROS was eliminated with N-acetyl-L-cysteine, mitochondrial remodeling was inhibited. Furthermore, when the polymerization of the actin cytoskeleton was inhibited with cytochalasin D, mitochondrial remodeling was also inhibited. These results suggest that ROS and actin cytoskeleton are rather involved in mitochondrial remodeling. In conclusion, the present results suggest that mitochondrial remodeling in endothelial cells under supraphysiological cyclic stretch is induced by ROS in association with actin cytoskeleton rather than through Drp1 activation.  相似文献   

20.
目的:检测Stathmin在正常脑组织及不同级别胶质瘤微血管内皮细胞中的表达情况。方法:利用结合CD105单克隆抗体的免疫磁珠内皮细胞分选系统特异性分选出68例胶质瘤微血管内皮细胞(其中低级别胶质瘤(WHO分级Ⅰ-Ⅱ)24例,高级别胶质瘤(WHO分级Ⅲ-Ⅳ)44例)和20例正常脑组织微血管内皮细胞。应用免疫组化、RT-PCR和Western blot检测Stathmin在胶质瘤微血管内皮细胞和正常脑组织微血管内皮细胞中的表达。结果:免疫组化证实Stathmin在正常脑组织微血管内皮细胞、低级别胶质瘤微血管内皮细胞和高级别胶质瘤微血管内皮细胞的表达百分率分别是20%,66%和95%(P<0.05)。RT-PCR和Western blot法检测显示,Stathmin在胶质瘤微血管内皮细胞中的表达明显增高。低级别胶质瘤组、高级别胶质瘤组分别与正常组比较,均有显著性差异(P<0.01);且低级别胶质瘤组与高级别胶质瘤组比较,有显著性差异(P<0.01),随着胶质瘤恶性程度的增加,Stathmin表达上调,具有统计学意义。结论:Stathmin在脑胶质瘤微血管内皮细胞中表达随肿瘤恶性程度增高而增加,可能为脑胶质瘤的生物治疗提供一个新靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号