首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rebamipide, an antiulcer agent, is known as a potent hydroxyl radical (OH) scavenger. In the present study, we further characterized the scavenging effect of rebamipide against OH generated by ultraviolet (UV) irradiation of hydrogen peroxide (H2O2), and identified the reaction products to elucidate the mechanism of the reaction. Scavenging effect of rebamipide was accessed by ESR using DMPO as a OH-trapping agent after UVB exposure (305 nm) to H2O2 for 1 min in the presence of rebamipide. The signal intensity of OH adduct of DMPO (DMPO-OH) was markedly reduced by rebamipide in a concentration-dependent fashion as well as by dimethyl sulfoxide and glutathione as reference radical scavengers. Their second order rate constant values were 5.62 × 1010, 8.16 × 109 and 1.65 × 1010 M-1 s-1, respectively. As the rebamipide absorption spectrum disappeared during the reaction, a new spectrum grew due to generation of rather specific reaction product. The reaction product was characterized by LC-MS/MS and NMR measurements. Finally, a hydroxylated rebamipide at the 3-position of the 2(1H)-quinolinone nucleus was newly identified as the major product exclusively formed in the reaction between rebamipide and the OH generated by UVB/H2O2. Specific formation of this product explained the molecular characteristics of rebamipide as a potential OH scavenger.  相似文献   

2.
The degradation of phenanthrene sorbed on soil has been carried out using a H2O2/goethite heterogeneous catalytic oxidation process. The effect of operating variables, such as the goethite concentration, pH, H2O2 concentration, soil organic matter, and bicarbonate ions has been investigated. The reaction followed pseudo-first order kinetics. The rate constants were evaluated and varied between 2.0×10?4 and 1.1×10?3?min?1 depending on the H2O2 concentration. The highest rate of degradation of phenanthrene was observed at a H2O2 concentration of 5?M and 134.0?g/kg goethite. The intermediate product formed during the degradation of phenanthrene was identified to be salicylic acid that finally degraded to CO2 and H2O. H2O2 consumption continued as the OH radical attacked the salicylic acid. More than 80% consumption of the 5?M H2O2 took place within 30?min, and the degradation was almost complete after 3?h of reaction. Neutral pH was found to be effective in the removal of phenanthrene. Both soil organic matter (SOM) and bicarbonate ions in the soil inhibited the oxidation rate of phenanthrene.  相似文献   

3.
Sea urchins have elaborated multiple defenses to assure monospermic fertilization. In this work, we have concentrated on a study of the mechanism(s) by which hydrogen peroxide (H2O2) prevents polyspermy in Arbacia punctulata. We found that it is not H2O2 but probably hypochlorous acid/hypochlorite (HOCl/OCl?) derived from H2O2 that is toxic to the supernumerary sperm. The spermicidal activity of H2O2 is potentiated by at least one order of magnitude by cupric ions (Cu2+). This increased toxicity is not due to the formation of hydroxyl radicals (·OH) because ·OH scavengers did not counteract the activity of Cu2+. More-over, substitution of Cu2+ by ferrous ions (Fe2+), which are known to cause formation of ·OH from H2O2, had no effect on fertilization even at 102?103 times higher concentrations. In contrast, 3-amino-1,2,4-triazole (AT), an HOCl/OCl? scavenger, totally reversed the toxic effects of Cu2+. Furthermore, we found that HOCl/OCl? is generated in solutions of H2O2 and Cu2+ in the presence of 0.5 M NaCl and that its accumulation is abolished by AT. Thus it is possible that the antifertility properties of copper are due to its ability to mediate formation of HOCl/OCl?. HOCl/OCl? generated by Cu2+ from H2O2 and Cl?, a low concentration of exogenously added HOCl/OCl?, or increased concentrations of H2O2 has similar inhibitory effects on the fertilization process in sea urchins. Therefore, we suggest that polyspermy is prevented by the action of a myeloperoxidase that affects the formation of HOCl/OCl? from the Cl? present in sea water through reaction with H2O2 generated by the newly fertilized egg.  相似文献   

4.
An intermediate radical, ?H2OH, was produced in aqueous methanol solution containing nitrous oxide by γ-irradiation. Yields of ethylene glycol and formaldehyde, the major and the minor product from ?H2OH, respectively, changed on the addition of some solutes. Cysteine lowered the both product yields to zero even at a low concentration of 5 × 10?5m. Oxygen of low concentrations (2.5~7.5 × 10?5 m) changed effectively the major product from ethylene glycol to formaldehyde. k (CySH+?H2OH)/k(O2+?H2OH) was calculated as 0.5.

Ascorbic acid (5 × 10?5 m) lowered ethylene glycol yield to 48%, cystine (10?3m) to 15%, methionine (10?3m) to 31%, histidine (10?3m) to 42%, tryptophan (10?3m) 46%, tyrosine (10?3m) to 77%, phenylalanine (10?3m) to 73%, hypoxanthine (10?3m) to 37%, adenine (10?3m) to 52%, uracil (10?3m) to 20%, thymine (10?3m) to 10%, cytosine (10?3 m) to 49%, rutin (10?3m) to 23%, pyrogallol (10?3m) to 41%, and gallic acid (10?3m) to 78% of the control. These results suggest that the reactions of the secondary radicals such as ?H2OH perform an important role in material change of foods irradiated with γ rays.  相似文献   

5.
《Free radical research》2013,47(1-2):11-15
A kinetic model has been used to estimate the rate constant for the reaction of superoxide (O2/OOH) with the superoxide spin adduct of 5.5-dimethylpyrroline-N-oxide. DMPO/OOH. This rate constant is estimated to be 4.9 (± 2.2) × 106 M?1 s?1, pH 7.4 and 25°C.  相似文献   

6.
Photocatalytic production of the electron (e-) and positive hole (h+) in an aqueous suspension of TiO2 (anatase form) under illumination by near-UV light (295-390 nm) generated the superoxide (O2 -) and hydroxyl radical (?OH), which both proceeded linearly with reaction time, while H2O2 accumulated non-linearly. Under anaerobic conditions (introduced Ar gas), the yields of three active species of oxygen were decreased to 10-20% of those detected in the air-saturated reaction. The electron spin resonance (ESR) signal characteristics of ?OH were obtained when a spin trap of 5,5-dimthyl-1-pyrroline-N-oxide (DMPO) was included in the illuminating mixture. The intensity of the ESR signal was increased by Cu/Zn superoxide dismutase, and decreased under anaerobic conditions, amounting to only 20% of the intensity detected in the aerobic reaction. The addition of H2O2 to the reaction mixture resulted in about an 8-fold increase of ?OH production in the anaerobic reaction, but only about 1.5-fold in the aerobic reaction, indicating that e- generated by the photocatalytic reaction reduced H2O2 to produce ?OH plus OH-. On the other hand, D2O lowered the yield of ?OH generation to 18% under air and 40% under Ar conditions, indicating the oxidation of H2O by h+. The addition of Fe(III)-EDTA as an electron acceptor effectively increased ?OH generation, 2.3-fold in the aerobic reaction and 8.4-fold in the anaerobic reaction, the yield in the latter exceeding that in the air-saturated reaction.  相似文献   

7.
A new biosensor based on catalase enzyme immobilized on electrochemically constructed polyaniline (PANI) film modified with glutaraldehyde has been developed for the determination of hydrogen peroxide (H2O2) in milk samples. Assembly processes of polyaniline and immobilization of the enzyme were monitored with the help of electrochemical impedance spectroscopy. Amperometric measurements have been performed at cathodic peak (?0.3?V vs. Ag/AgCI) which was attributed to reduction of PANI. Hydrogen peroxide was determined by using amperometric method at ?0.3?V. The biosensor responses were correlated linearly with the hydrogen peroxide concentrations between 5.0?×?10?6 and 1.0?×?10?4?M by amperometric method. Detection limit of the biosensor is 2.18?×?10?6?M for H2O2. In the optimization studies of the biosensor, some parameters such as optimum pH, temperature, concentration of aniline, amount of enzyme, and number of scans during electropolymerization were investigated.  相似文献   

8.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   

9.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《Luminescence》2004,19(1):1-7
Indole‐2 and 3‐carboxamides (IDs) are proposed to be selective cyclooxygenase inhibitors. Since cyclooxygenase‐1 may be involved in reactive oxygen species (ROS) production, we hypothesize that these indole derivatives have antioxidative properties. We have employed chemiluminescence (CL) and electron spin resonance (ESR) spin trapping to examine this hypothesis. We report here the results of a study of reactivity of 10 selected indole derivatives towards ROS. The following generators of ROS were applied: potassium superoxide (KO2) as a source of superoxide radicals (O2·?), the Fenton reaction (Co‐EDTA/H2O2) for hydroxyl radicals (HO·), and a mixture of alkaline aqueous H2O2 and acetonitrile for singlet oxygen (1O2). Hydroxyl radicals were detected as 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) spin adduct, whereas 2,2,6,6‐tetramethyl‐piperidine (TEMP) was used as a detector of 1O2. Using the Fenton reaction, 0.5 mmol/L IDs were found to inhibit DMPO‐?H radical formation in the range 7–37%. Furthermore the tested compounds containing the thiazolyl group also inhibited the 1O2‐dependent TEMPO radical, generated in the acetonitrile + H2O2 system. About 20% inhibition was obtained in the presence of 0.5 mmol/L IDs. 1 mmol/L IDs caused an approximately 13–70% decrease in the CL sum from the O2·? generating system (1 mmol/L). The aim of this paper is to evaluate these indole derivatives as antioxidants and their abilities to scavenge ROS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
《Free radical research》2013,47(7):861-871
Abstract

The radiation-induced reactions of a water-soluble coumarin derivative, coumarin-3-carboxyl acid (C3CA), have been investigated in aqueous solutions by pulse radiolysis with a 35 MeV electron beam, final product analysis following 60Co γ-irradiations and deterministic model simulations. Pulse radiolysis revealed that C3CA reacted with both hydroxyl radicals (?OH) and hydrated electrons (e? aq) with near diffusion-controlled rate constants of 6.8 × 109 and 2.1 × 1010 M?1 s?1, respectively. The reactivity of C3CA towards O2? ? was not confirmed by pulse radiolysis. Production of the fluorescent molecule, 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), was confirmed by final product analysis with a fluorescence spectrometer coupled to a high performance liquid chromatography (HPLC) system. Production yields of 7OH-C3CA following 60Co γ-irradiations depended on the irradiation conditions and ranged from 0.025 to 0.18 (100 eV) ?1. Yield varied with saturating gas, additive and C3CA concentration, implying the presence of at least two pathways capable of providing 7OH-C3CA as a stable product following the scavenging reaction of C3CA with ?OH, including a peroxidation/elimination sequence and a disproportionation pathway. A reaction mechanism for the two pathways was proposed and incorporated into a deterministic simulation, showing that the mechanism can explain experimentally measured 7OH-C3CA yields with a constant conversion factor of 4.7% from ?OH scavenging to 7OH-C3CA production, unless t-BuOH was added.  相似文献   

12.
A reaction of the superoxide radical with tetrapyrroles   总被引:1,自引:0,他引:1  
Bilirubin and biliverdin were bleached during exposure to the aerobic xanthine oxidase reaction. Enzymic scavenging of O2?, by Superoxide dismutase, inhibited, whereas enzymic scavenging of H2O2, by catalase, did not. Increasing the rate of production of O2? without increasing the turnover rate of xanthine oxidase, by increasing pO2, accelerated the bleaching of the biliverdin. Moreover, a scavenger of OH·, such as benzoate, or an inactivating chelating agent for iron, such as diethylenetriamine pentaacetate or desferrioxamine mesylate, did not inhibit. It follows that O2? can directly attack these tetrapyrroles. Kinetic competition between Superoxide dismutase and bilirubin yielded a value for kbilirubin, O2? = 2.3 × 104 M?1s?1 at pH 8.3 and at 23 °C. A similar experiment for biliverdin yielded a value for kbilirubin, O2? = 7 × 104 M?1s?1.  相似文献   

13.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

14.
A highly sensitive and simple spectrofluorimetric method for the determination of tiopronin based on its inhibitory effect on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine was developed. The concentration of tiopronin is linear with decreased fluorescence (ΔF) of the system under the optimal experimental conditions. The calibration graph is linear in the range 1.23 × 10?8 to 3.06 × 10?5 mol L?1 with a detection limit of 6.13 × 10?9 mol L?1. The relative standard deviation was 4.38% for 11 determinations of 6.13 × 10?6 mol L?1. This method can be used for the determination of tiopronin in pharmaceuticals with satisfactory results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Hao Yu 《Free radical research》2013,47(9-10):1005-1013
Abstract

Pulse radiolysis was conducted to investigate: several fundamental reactions of a natural flavonoid, rutin, and its glycosylated form (αG-rutin) as a basis for their radiation protection properties; the reactions with ?OH (radical scavenging) and dGMP radical, dGMP? (chemical repair), which was used as a model of initial and not yet stabilised damage on DNA. Three absorption peaks were commonly seen in the reactions of the flavonoids with ?OH, showing that their reactive site is the common structure, i.e. aglycone. One among the three peaks was attributed to the flavonoid radical produced as a result of the removal of a hydrogen atom. The same peak was found in their reactions with dGMP?, showing that dGMP? is chemically repaired by obtaining a hydrogen atom supplied from the flavonoids. Such a spectral change due to the chemical repair was as clear as never reported. The rate constants of the chemical repair reaction were estimated as (9?±?2)×108 M?1 s?1 and (6?±?1)×108 M?1 s?1 for rutin and αG-rutin, respectively. The rate constants of the radical scavenging reactions towards ?OH were estimated as (1.3?±?0.3)×1010 M?1 s?1 and (1.0?±?0.1)×1010 M?1 s?1 for rutin and αG-rutin, respectively. In addition, there was no obvious difference between rutin and αG-rutin, indicating that the glycosylation does not change early chemical reactions of rutin.  相似文献   

16.
The reduction of methemerythrin (Hr+) by dithionite produces deoxyhemerythrin (Hro) in multi, possibly three, stages. The kinetics were examined at pH 8·2 and 25 °C. The first stage is reduction of methemerythrin to an intermediate A by SO2- (k = 1.3 × 105m?1s?1). The much slower second and third stages have rates independent of dithionite concentrations. Reaction is completed after about 10 h. The kinetics of reactions of A with N3-, H2O2, and O2 were examined, as well as the conversion of A to intermediate B (k = 4·4 × 10?4s?1). It is concluded that A is an (Fe(II)Fe(III))8 species, and that in B the unit (Fe(II)Fe(II))8 is well developed, judging by its unreactivity towards N3?, its reaction with H2O2, and its reversible uptake of O2 (85–90% of the final product). There is little effect of adjusting the pH to 6·3 on the rates of the processes examined.  相似文献   

17.
《Free radical research》2013,47(6):377-385
Electron spin resonance spectroscopy and the spin trapping technique were used to study the formation of the superoxide radical in pyridine. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was employed as a trapping agent. Superoxide radical was generated using chemical (potassium superoxide) and photochemical methods with anthralin, benzanthrone, rose bengal, 1,8-dihydroxyanthraquinone and zinc tetraphenylporphyrine as photoactive pigments. Hyperfine coupling (hf) constants for DMPO/O2- were determined to be aN = 12.36 G, aβH= 9.85G, aγH = 1.34 G. The aN and aβH constants are in good agreement with values calculated from a previously determined relationship between hf constants and solvent acceptor number (Reszka et al., (1992) Free Radical Res. Commun., in press). When concentrated hydrogen peroxide was added to DMPO in pyridine a similar EPR spectrum was observed. It is suggested that in this case the DMPO/'O2H adduct is formed by nucleophilic addition of H2O2 to DMPO to give a hydroxylamine, followed by oxidation to the respective nitroxide. The EPR spectrum observed when tetrapropylammonium hydroxide and H2O2 were added to DMPO in pyridine had hf couplings aN = 13.53 G, aβH = 11.38 G, aγH = 0.79 G and it was assigned to a DMPO/'OH adduct. This assignment was based on similarity of this spectrum to the one produced by UV photolysis of hydrogen peroxide and DMPO in aqueous solution and subsequent transfer to pyridine.  相似文献   

18.
The method is based on the fact that dipyridamole can enhance the chemiluminescence (CL) emission from the redox reaction of bis (2,4,6‐tricholorophenyl) oxalate (TCPO) with H2O2 in the presence of silver nanoparticles (AgNPs). The CL reaction mechanism was discussed. The effect of concentrations of TCPO, H2O2, AgNPs and pH value on the CL reaction were investigated. Under the optimum conditions, the linear dynamic range was 1.0–1000 × 10?9 g/mL and the detection limit (3σ) was 9 × 10?10 g/mL. The relative standard deviation (RSD) was 4.8% for 1.0 × 10?9 g/mL dipyridamole (n = 7). The proposed method has been successfully applied to the determination of dipyridamole tablets and the recovery was 99–103%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The reaction of hydroxyl radicals (?OH) and superoxide anions (O2?) with methional were investigated by pulse-radiolytic methods. The second-order rate constant for the attack of OH was determined at 8.2×109 M?1 sec?1. In the case of O2? a slow first-order decay rate of 5.2×103 sec?1 suggests a far less efficient reaction. The transient species were identified by comparison with published results of pulse radiolysis and EPR spectroscopy of model compounds. The mechanism for the oxidation of methional by OH was found to be more complex than a simple fragmentation reaction.  相似文献   

20.
N-Nitrosodialkylamines are known to be potent indirect-acting mutagens/carcinogens, which are activated by cytochrome P450. The reaction product of N-nitroso-N-methylbutylamine (NMB) with modified Fenton’s reagent supplemented with copper salt (Fe2+–Cu2+–H2O2) was reported to be mutagenic in Salmonella typhimurium TA1535 without S9 mix. In this study, the NMB activation mechanism was investigated by ESR spectroscopy with radical trapping agents to detect radical species and also by observing changes in mutagenic potency with a Salmonella strain in the Ames assay in the presence of radical trapping agents. In ESR spectroscopy experiments, the hydroxyl radical generated from the modified Fenton’s reagent was detected using the hydroxyl radical trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Since the amount of the DMPO–OH adduct decreased with the addition of NMB, hydroxyl radical was presumed to react with NMB followed by the generation of nitric oxide (NO), which was detected as CarboxyPTI through reaction with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (CarboxyPTIO). The mutagenicity of the reaction extract decreased following the addition of DMPO or CarboxyPTIO. Furthermore, the mutagenicity of the reaction product in the presence of DMPO was enhanced by the addition of NO. The reaction product from NMB with Fe2+–Cu2+–NO in the absence of H2O2 was mutagenic, and this activity increased with the introduction of additional NO. These findings suggest that hydroxyl radical takes part in the generation of NO from NMB and that NO plays an important role in NMB activation in the presence of Fe2+ and Cu2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号