首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated that impaired protein synthesis occurs in several neurodegenerative conditions associated with oxidative stress. Studies have also demonstrated that administration of oxidative stressors is sufficient to impair different and discrete regulatory aspects of protein synthesis in neural cells, with the majority of these studies focused on the effects of oxidative stressors towards initiation factors. Currently, little is known with regards to oxidative stress effects on the rates of RNA- and protein-synthesis, or the relationship between oxidant-induced impairments in RNA-/protein-synthesis to subsequent neuron death. In the present study, we demonstrate that administration of an oxidative stressor (hydrogen peroxide) induces a significant and time-dependent decrease in both RNA- and protein-synthesis in primary neurons and neural SH-SY5Y cells. Increases in RNA oxidation and disruption of ribosome complexes were selectively observed following the longer durations of oxidant exposure. Significant correlations between the loss of RNA- and protein-synthesis and the amount of oxidant-induced neuron death were also observed. Interestingly, the addition of a protein synthesis inhibitor (cycloheximide) did not significantly alter the amount of neuron death induced by the oxidative stressor. These data demonstrate that oxidant exposure promotes a time-dependent decrease in both RNA- and protein-synthesis in neurons, and demonstrate a role for elevations in RNA oxidation and ribosome dysfunction as potential mediators of impaired protein synthesis. These data also suggest that there is a complex relationship between the ability of oxidative stressors to modulate RNA- and protein-synthesis, and the ability of oxidative stressors to ultimately induce neuron death.  相似文献   

2.
3.
Dolichols as unesterified alcohols were identified as significant components of lipid extracts from storage cytosomes isolated post-mortem from the brains of patients with the infantile, late infantile, and juvenile types of neuronal ceroid-lipofuscinosis (NCL). Very small amounts of dolichols were present in the corresponding subcellular fractions of non-NCL brains. The nuclear fraction from NCL cerebral cortex contained the highest dolichol content expressed per milligram protein or lipid, whereas the crude mitochondrial fraction was the richest in normal brain. Highly significant elevations of dolichol levels were found in human cerebral cortex of patients with NCL and Alzheimer's disease compared with age-matched controls, but the levels were normal in Pick's disease. In human non-NCL cerebral cortex, dolichols increased from 16 micrograms/g at age 5 to over 200 at age 81. Rat cerebral cortex showed a similar progressive increase in dolichol content with age. The high dolichol values in NCL, Alzheimer's disease, and senescence appears to be related to the increase of lipofuscin in brain. This is the first time a uniform biochemical abnormality has been found in all childhood forms of NCL, but the enzyme defect is still unidentified. It may lie on pathways where dolichols and retinyl compounds are recycled in Golgi membranes and derived organelles during the biosynthesis of glycoproteins.  相似文献   

4.
5.
《Free radical research》2013,47(10):1207-1222
Abstract

The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression. LPO, total SOD, SOD1 and SOD2 activities were increased while GST and catalase were reduced in a dose and time dependent manner. Expressions of SOD1 and HO-1 were increased while no change was observed in SOD2 and γ-GCS expressions. The results obtained suggest that Zn-induced augmentation of total SOD, SOD1, SOD2 and HO-1 was associated with increased oxidative stress and neurodegenerative indexes indicating the involvement of both cytosolic and mitochondrial machinery in Zn-induced oxidative stress leading to dopaminergic neurodegeneration.  相似文献   

6.
7.
《Free radical research》2013,47(8):569-576
Abstract

A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients.

APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis.

We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers.

This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor.  相似文献   

8.
Oxidative damage is associated with Alzheimer's disease and mild cognitive impairment, but its relationship to the development of neuropathological lesions involving accumulation of amyloid-beta (Abeta) peptides and hyperphosphorylated tau protein remains poorly understood. We show that inducing oxidative stress in primary chick brain neurons by exposure to sublethal doses of H(2)O(2 )increases levels of total secreted endogenous Abeta by 2.4-fold after 20 h. This occurs in the absence of changes to intracellular amyloid precursor protein or tau protein levels, while heat-shock protein 90 is elevated 2.5-fold. These results are consistent with the hypothesis that aging-associated oxidative stress contributes to increasing Abeta generation and up-regulation of molecular chaperones in Alzheimer's disease.  相似文献   

9.
The mechanisms of injury- and disease-associated apoptosis of neurons within the CNS are not understood. We used a model of cortical injury in rat and mouse to induce retrograde neuronal apoptosis in thalamus. In this animal model, unilateral ablation of the occipital cortex induces apoptosis of corticopetal projection neurons in the dorsal lateral geniculate nucleus (LGN), by 7 days post-lesion, that is p53 modulated and Bax dependent. We tested the hypothesis that this degenerative process is initiated by oxidative stress and early formation of DNA damage and is accompanied by changes in the levels of pro-apoptotic mediators of cell death. Immunoblotting revealed that the protein profiles of Bax, Bak and Bad were different during the progression of neuronal apoptosis in the LGN. Bax underwent a subcellular redistribution by 1 day post-lesion, while Bak increased later. Bad showed an early sustained increase. Cleaved caspase-3 was elevated maximally at 5 and 6 days. Active caspase-3 underwent a subcellular translocation to the nucleus. A dramatic phosphorylation of p53 was detected at 4 days post-lesion. DNA damage was assessed immunocytochemically as hydroxyl radical adducts (8-hydroxy-2-deoxyguanosine) and single-stranded DNA. Both forms of DNA damage accumulated early in target-deprived LGN neurons. Transgenic overexpression of superoxide dismutase-1 provided significant protection against the apoptosis but antioxidant pharmacotreatments with trolox and ascorbate were ineffective. We conclude that overlapping and sequential signaling pathways are involved in the apoptosis of adult brain neurons and that DNA damage generated by superoxide derivatives is an upstream mechanism for p53-regulated, Bax-dependent apoptosis of target-deprived neurons.  相似文献   

10.
11.
The extracellular accumulation of amyloid-beta (Abeta) in neuritic plaques is one of the characteristic hallmarks of Alzheimer's disease (AD), a progressive dementing neurodegenerative disorder of the elderly. By virtue of its structure, Abeta is able to bind to a variety of biomolecules, including lipids, proteins and proteoglycans. The binding of the various forms of Abeta (soluble or fibrillar) to plasma membranes has been studied with regard to the direct toxicity of Abeta to neurons, and the activation of a local inflammation phase involving microglia. The binding of Abeta to membrane lipids facilitates Abeta fibrillation, which in turn disturbs the structure and function of the membranes, such as membrane fluidity or the formation of ion channels. A subset of membrane proteins binds Abeta. The serpin-enzyme complex receptor (SEC-R) and the insulin receptor can bind the monomeric form of Abeta. The alpha7nicotinic acetylcholine receptor (alpha7nAChR), integrins, RAGE (receptor for advanced glycosylation end-products) and FPRL1 (formyl peptide receptor-like 1) are able to bind the monomeric and fibrillar forms of Abeta. In addition, APP (amyloid precursor protein), the NMDA-R (N-methyl-D-aspartate receptor), the P75 neurotrophin receptor (P75NTR), the CLAC-P/collagen type XXV (collagen-like Alzheimer amyloid plaque component precursor/collagen XXV), the scavenger receptors A, BI (SR-A, SR-BI) and CD36, a complex involving CD36, alpha6beta1-integrin and CD47 have been reported to bind the fibrillar form of Abeta. Heparan sulfate proteoglycans have also been described as cell-surface binding sites for Abeta. The various effects of Abeta binding to these membrane molecules are discussed.  相似文献   

12.

Background

The deposition of aggregated β-amyloid peptide senile plaques and the accumulation of arginine within the astrocytes in the brain of an Alzheimer's patient are classic observations in the neuropathology of the disease. It would be logical, in the aetiology and pathogenesis, to investigate arginine-metabolising enzymes and their intimate association with amyloid peptides.

Methods

Neuronal nitric oxide synthase (nNOS) was isolated, purified and shown, through fluorescence quenching spectroscopy and fluorescence resonance energy transfer (FRET), to interact with structural fragments of Aβ1–40 and be catalytic towards amyloid fibril formation.

Results

Only one binding site on the enzyme was available for binding. Two amyloid peptide fragments of Aβ1–40 (Aβ17–28 and Aβ25–35) had Stern–Volmer values (KSV) of 0.111 μM−1 and 0.135 μM−1 indicating tight binding affinity to nNOS and easier accessibility to fluor molecules during binding. The polarity of this active site precludes binding of the predominantly hydrophobic amyloid peptide fragments contained within Aβ17–28 and within two glycine zipper motifs [G-X-X-X-G-X-X-X-G] [Aβ29–37] and bind to the enzyme at a site remote to the active region.

Conclusions

The interaction and binding of Aβ17–28 and Aβ25–35 to nNOS causes the movement of two critical tryptophan residues of 0.77 nm and 0.57 nm respectively towards the surface of the enzyme.

General significance

The binding of Aβ-peptide fragments with nNOS has been studied by spectrofluorimetry. The information and data presented should contribute towards understanding the mechanism for deposition of aggregated Aβ-peptides and fibrillogenesis in senile plaques in an AD brain.  相似文献   

13.
Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular.  相似文献   

14.
The neuronal microtubule-associated protein tau plays an important role in establishing cell polarity by stabilizing axonal microtubules that serve as tracks for motor-protein–driven transport processes. To investigate the role of tau in intracellular transport, we studied the effects of tau expression in stably transfected CHO cells and differentiated neuroblastoma N2a cells. Tau causes a change in cell shape, retards cell growth, and dramatically alters the distribution of various organelles, known to be transported via microtubule-dependent motor proteins. Mitochondria fail to be transported to peripheral cell compartments and cluster in the vicinity of the microtubule-organizing center. The endoplasmic reticulum becomes less dense and no longer extends to the cell periphery. In differentiated N2a cells, the overexpression of tau leads to the disappearance of mitochondria from the neurites. These effects are caused by tau''s binding to microtubules and slowing down intracellular transport by preferential impairment of plus-end–directed transport mediated by kinesin-like motor proteins. Since in Alzheimer''s disease tau protein is elevated and mislocalized, these observations point to a possible cause for the gradual degeneration of neurons.  相似文献   

15.
A long‐term cell culture system was used to study maturation, aging, and death of cortical neurons. Mouse cortical neurons were maintained in culture in serum‐free medium (Neurobasal supplemented with B27) for 60 days in vitro (DIV). The levels of several proteins were evaluated by immunoblotting to demonstrate that these neurons matured by developing dendrites and synapses and remained continuously healthy for 60 DIV. During their maturation, cortical neurons showed increased or stable protein expression of glycolytic enzyme, synaptophysin, synapsin IIa, α and β synucleins, and glutamate receptors. Synaptogenesis was prominent during the first 15 days and then synaptic markers remained stable through DIV60. Very early during dendritic development at DIV3, β‐synuclein (but not α‐synuclein) was localized at the base of dendritic growth cones identified by MAP2 and α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole (AMPA) receptor GluR1. In mature neurons, α and β synucleins colocalized in presynaptic axon terminals. Expression of N‐methyl‐D ‐aspartate (NMDA) and AMPA receptors preceded the formation of synapses. Glutamate receptors continued to be expressed strongly through DIV60. Cortical neurons aging in vitro displayed a complex profile of protein damage as identified by protein nitration. During cortical neuron aging, some proteins showed increased nitration, while other proteins showed decreased nitration. After exposure to DNA damaging agent, young (DIV5) and old (DIV60) cortical neurons activated apoptosis mechanisms, including caspase‐3 cleavage and poly(ADP)‐ribose polymerase inactivation. We show that cultured mouse cortical neurons can be maintained for long term. Cortical neurons display compartmental changes in the localization of synucleins during maturation in vitro. These neurons sustain protein nitration during aging and exhibit age‐related variations in the biochemistry of neuronal apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 9–23, 2002  相似文献   

16.
Alzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD. In addition, insulin therapy has been shown to improve memory in patients with cognitive decline. In this study, we report the first examination of body composition, peripheral insulin sensitivity, and glucose tolerance in relation to behavioral assessments of learning, memory, and anxiety in the TgF344-AD rat model of AD. Results from glucose and insulin tolerance tests show that female TgF344-AD rats exhibit impaired glucose clearance and reduced insulin sensitivity at both 9 and 12 months of age, while males display no differences at 9 months and even improved glucose clearance at 12 months. Results from the Morris Water Maze assessment of learning and memory reveal that male TgF344-AD rats display impairments at both 9 and 12 months of age, while female TgF344-AD rats only show impairments at 12 months. Furthermore, results from open field and elevated plus maze tests suggest that female TgF344-AD rats display increased anxiety at 9 months of age; however, no differences were detected in males or at 12 months of age. Overall, our findings suggest that impairments in metabolism, commonly associated with type 2 diabetes, occur before or simultaneously with cognitive decline and anxiety in a sexually dimorphic manner in the TgF344-AD rat model.  相似文献   

17.
18.
O‐linked β‐N‐acetlyglucosamine or O‐GlcNAc modification is a dynamic post‐translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O‐GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O‐GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH‐SY5Y we investigated the dynamic nature of O‐GlcNAc after treatment with 0.5 mM H2O2 for 30 min. to induce oxidative stress. We found that overall O‐GlcNAc quickly increased and reached peak level at around 2 hrs post‐stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O‐Glycosylation. In conclusion, our results show that temporary elevation in O‐GlcNAc modification after H2O2‐induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O‐GlcNAc and phosphorylation on tau proteins.  相似文献   

19.

Background

Menopause is associated with sharp declines in concentrations of circulating estrogens. This change in hormone milieu has the potential to affect brain functions relevant to dementia and cognitive aging.

Scope of review

Focused review of published results of randomized clinical trials of estrogen-containing hormone therapy for Alzheimer's disease treatment and dementia prevention, observational research on cognition across the menopause transition, and observational research on the association of hormone therapy and Alzheimer's disease risk.

Major conclusions

Clinical trial evidence supports conclusions that estrogen therapy does not improve dementia symptoms in women with Alzheimer's disease and that estrogen-containing hormone therapy initiated after about age 65 years increases dementia risk. Hormone therapy begun in this older postmenopausal group does not ameliorate cognitive aging. Cognitive outcomes of midlife hormone exposures are less well studied. There is no strong indication of short-term cognitive benefit of hormone use after natural menopause, but clinical trial data are sparse. Little research addresses midlife estrogen use after surgical menopause; limited clinical trial data imply short-term benefit of prompt initiation at the time of oophorectomy. Whether exogenous estrogen exposures in the early postmenopause affect Alzheimer risk or cognitive aging much later in life is unanswered by available data. Observational results raise the possibility of long-term cognitive benefit, but bias is a concern in interpreting these findings.

General significance

Estrogen-containing hormone therapy should not be initiated after age 65 to prevent dementia or remediate cognitive aging. Further research is needed to understand short-term and long-term cognitive effects of estrogen exposures closer to the age of menopause.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号