共查询到20条相似文献,搜索用时 19 毫秒
1.
The neutrophil enzyme myeloperoxidase (MPO) purposefully makes hypochlorous acid (HOCl) as part of the cells defence against microbial infections. During cell lysis, however, MPO will be released into the extracellular environment where production of HOCl, a powerful oxidant, will lead to molecular damage. Extracellular MPO binds to the copper-containing protein caeruloplasmin (Cp) and prevents MPO making HOCl. Cp has several important antioxidant functions in extracellular fluids associated with its ability to catalyse oxidation of ferrous ions and to remove peroxides. The binding of MPO to Cp did not inhibit these important extracellular antioxidant activities of Cp, but in so doing it provided additional antioxidant protection against formation of HOCl. 相似文献
2.
Properties, Functions, and Secretion of Human Myeloperoxidase 总被引:11,自引:0,他引:11
Arnhold J 《Biochemistry. Biokhimii?a》2004,69(1):4-9
The heme-containing protein myeloperoxidase is released from stimulated polymorphonuclear leukocytes at sites of inflammation. It is involved in the generation of reactive oxygen and nitrogen species and tissue damage. The general properties and functional aspects of this enzyme are reviewed. Special attention is given to luminescence methods for investigating the release of myeloperoxidase from stimulated cells. 相似文献
3.
Pravin T Goud David Bai Husam M Abu-Soud 《International journal of biological sciences》2021,17(1):62
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with “cytokine storms” could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19. 相似文献
4.
5.
Kodama N Kambayashi Y Kubo M Nobukuni Y Kimura S Nakamura H Ogino K 《Cell biochemistry and function》2004,22(2):105-112
The human eosinophilic leukemia cell line, EoL-1, differentiated with butyrate as an eosinophilic cellular model was evaluated for peroxidase-dependent tyrosine nitration. Butyrate suppressed cell growth and induced eosinophilic granules in EoL-1 cells after 9 days of culture. Peroxidase activity was detected biochemically and histochemically from 3-day cultures and it increased in a time dependent manner. This peroxidase activity was inhibited by cyanide. Nitrotyrosine formation catalysed by peroxidase using hydrogen peroxide and nitrite was detected at a high level similar to that of mature eosinophils. However, no expression of eosinophil peroxidase (EPO) was detected by RT-PCR or immunocytochemistry. In contrast, the induction of myeloperoxidase (MPO) by butyrate was clearly detected by RT-PCR, Northern blot, and immunocytochemical staining. These results suggest that butyrate induces MPO rather than EPO in EoL-1 cells and that the formation of nitrotyrosine in butyrate-induced cells is dependent on MPO. 相似文献
6.
Antoní n Lojek Milan í Ê Hana Slaví kov Monika Du
kov Jan Vondr ek Luk
Kubala Ildik R cz J nos Hamar 《Free radical research》1997,27(4):359-367
Intestinal ischemia and reperfusion elicits changes in leukocyte counts and increased production of reactive oxygen species (ROS). The purpose of this study was to investigate whether these changes were followed by and/or connected with changes in the extracellular antioxidative capacity in a rat superior mesenteric artery (SMA) occlusion/reperfusion model. The SMA was occluded for 45 min and then allowed to be reper-fused. Changes of leukocyte, polymorphonuclear (PMN), and lymphocyte counts, chemiluminescence (CL) of whole blood samples as a marker of ROS production, and the total antioxidative capacity of the serum were quantified at the end of ischemia and in 1 h intervals during the postischemic period up to 4 h. The myeloperoxidase (MPO) activity in the serum and intestinal tissue samples was also determined. The MPO activity in the intestinal tissue samples was significantly elevated at the end of ischemia, and this elevation lasted for the whole postischemic period. The oxidative challenge to the body induced a fast mobilization of extracellular antioxidative mechanisms already at the end of ischemia, which was followed by a significant increase in PMN counts and whole blood CL starting at the 2nd hour after reperfusion. The increased CL activity of whole blood was attributed to the increase of the circulating PMNs. No significant changes were observed in leukocyte and lymphocyte counts. It is concluded that compensatory mechanisms of the oxidative-antioxidative balance of the body react very quickly if challenged. 相似文献
7.
In this work, the effects of H2O2 at concentrations of 10?8–10?2 mol/l on the neutrophil ability to generate reactive oxygen and chlorine species (ROCS) and to secrete myeloperoxidase (MPO) were studied, as well as the H2O2 damaging action on neutrophils. It was found that H2O2 at concentrations of 2 × 10?3–10?2 mol/l led to disturbances of neutrophil membrane barrier properties and to a lactate dehydrogenase release. Incubation of neutrophils with an addition of 10?4–10?7 mol/l H2O2 was accompanied by an increase of the cell ability to generate ROCS during phagocytosis and a decrease of neutrophil ability to secrete MPO and ROCS into the extracellular medium during adhesion. Mechanisms of the H2O2 action are coupled with arachidonic acid metabolism. Inhibition of the 5-lipoxygenase or cyclooxygenase metabolism pathways produced an enhancement of the H2O2 destructive effect. Block of 5-lipoxygenase pathway led to elimination of the H2O2 action on MPO and ROCS secretion and to an enhancement of the H2O2 effect on the neutrophil ability to generate ROCS during phagocytosis. The obtained data indicate a high blood neutrophil resistance to the H2O2 destructive action and confirm the H2O2 regulatory role with respect to the neutrophil functions. 相似文献
8.
《Free radical research》2013,47(6):800-811
AbstractMyeloperoxidase (MPO) and eosinophil peroxidase (EPO) are involved in the development of halogenative stress during inflammation. We previously described a complex between MPO and ceruloplasmin (CP). Considering the high structural homology between MPO and EPO, we studied the latter's interaction with CP and checked whether EPO becomes inhibited in a complex with CP. Disc-electrophoresis and gel filtration showed that CP and EPO form a complex with the stoichiometry 1:1. Affinity chromatography of EPO on CP-agarose (150 mM NaCl, 10 mM Na-phosphate buffer, of pH 7.4) resulted in retention of EPO. EPO protects ceruloplasmin from limited proteolysis by plasmin. Only intact CP shifted the Soret band typical of EPO from 413 to 408 nm. The contact with CP likely causes changes in the heme pocket of EPO. Peroxidase activity of EPO with substrates such as guaiacol, orcinol, o-dianisidine, 4-chloro-1-naphtol, 3,3’,5,5’-tetramethylbenzidine, and 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) is inhibited by CP in a dose-dependent manner. Similar to the interaction with MPO, the larger a substrate molecule, the stronger the inhibitory effect of CP upon EPO. The limited proteolysis of CP abrogates its capacity to inhibit the peroxidase activity of EPO. The peptide RPYLKVFNPR (corresponding to amino acids 883–892 in CP) inhibits the peroxidase and chlorinating activity of EPO. Only the chlorinating activity of EPO is efficiently inhibited by CP, while the capacity of EPO to oxidize bromide and thiocyanate practically does not depend on the presence of CP. EPO enhances the p-phenylenediamine-oxidase activity of CP. The structural homology between the sites in the MPO and EPO molecules enabling them to contact CP is discussed. 相似文献
9.
Nathaniel Teng Ghassan J. Maghzal Jihan Talib Imran Rashid Antony K. Lau 《Redox report : communications in free radical research》2017,22(2):51-73
Atherosclerosis is the main pathophysiological process underlying coronary artery disease (CAD). Acute complications of atherosclerosis, such as myocardial infarction, are caused by the rupture of vulnerable atherosclerotic plaques, which are characterized by thin, highly inflamed, and collagen-poor fibrous caps. Several lines of evidence mechanistically link the heme peroxidase myeloperoxidase (MPO), inflammation as well as acute and chronic manifestations of atherosclerosis. MPO and MPO-derived oxidants have been shown to contribute to the formation of foam cells, endothelial dysfunction and apoptosis, the activation of latent matrix metalloproteinases, and the expression of tissue factor that can promote the development of vulnerable plaque. As such, detection, quantification and imaging of MPO mass and activity have become useful in cardiac risk stratification, both for disease assessment and in the identification of patients at risk of plaque rupture. This review summarizes the current knowledge about the role of MPO in CAD with a focus on its possible roles in plaque rupture and recent advances to quantify and image MPO in plasma and atherosclerotic plaques. 相似文献
10.
Ange M.L. Mouithys-Mickalad Shao-Xiong Zheng Ginette P. Deby-Dupont Carol M.T. Deby Maurice M Lamy Jean-Yves Y. Reginster 《Free radical research》2013,47(5):607-621
Objectives. To determine the antioxidant activities of nonsteroidal anti-inflammatory drugs (NSAIDS), we examined by chemiluminescence (CL) and electron spin resonance (ESR) their scavenging properties towards lipid peroxides, hypochlorous acid and peroxynitrite.Methods. The antioxidant properties of nimesulide (NIM), 4-hydroxynimesulide (4-HONIM), aceclofenac (ACLO), 4-hydroxyaceclofenac (4-HOA-CLO), diclofenac (DICLO) and indomethacin (INDO) were tested on four different reactive oxygen species (ROS) generating systems: (I) phorbol-myristate acetate (PMA)-activated neutrophils, (II) Fe2+/ascorbate-induced lipid peroxidation, (III) HOCl-induced light emission, (IV) the kinetics of ONOO- decomposition followed by spectrophotometry. ROS production was monitored by luminol-enhanced CL or by ESR using two different spin traps.Results. At 10 μM, ACLO, NIM, 4-HONIM, 4-HOA-CLO, and DICLO decreased luminol-enhanced CL generated by PMA-activated neutrophils. Inversely, INDO increased the luminol enhanced CL. Interestingly, hydroxylated metabolites were more potent antioxidants than the parent drugs. Furthermore, all drugs tested, excepted ACLO, lowered lipid peroxidation induced by Fe2+/ascorbate system. ACLO and DICLO, even at the highest concentration tested (100 μM), did not significantly lower HOCl induced CL, whereas the other drugs were potent scavengers. Finally, all the NSAIDS accelerated decomposition of ONOO-, suggesting a potential capacity of the molecules to scavenge peroxynitrite.Conclusion. The NSAIDs possess variable degrees of antioxidant activities, linked to their ability to react with HOCl, lipid peroxides or ONOO-. These antioxidant activities could offer interesting targeted side-effects in the treatment of joint inflammatory diseases. 相似文献
11.
12.
RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation 总被引:1,自引:0,他引:1
Hailong Pei Jian Zhang Jing Nie Nan Ding Wentao Hu Junrui Hua 《Cell cycle (Georgetown, Tex.)》2017,16(1):113-122
Our recent study showed that quiescent G0 cells are more resistant to ionizing radiation than G1 cells; however, the underlying mechanism for this increased radioresistance is unknown. Based on the relatively lower DNA damage induced in G0 cells, we hypothesize that these cells are exposed to less oxidative stress during exposure. As a catalytic subunit of NADPH oxidase, Ras-related C3 botulinum toxin substrate 2 (RAC2) may be involved in the cellular response to ionizing radiation. Here, we show that RAC2 was expressed at low levels in G0 cells but increased substantially in G1 cells. Relative to G1 cells, the total antioxidant capacity in G0 phase cells increased upon exposure to X-ray radiation, whereas the intracellular concentration of ROS and malondialdehyde increased only slightly. The induction of DNA single- and double-stranded breaks in G1 cells by X-ray radiation was inhibited by knockdown of RAC2. P38 MAPK interaction with RAC2 resulted in a decrease of functional RAC2. Increased phosphorylation of P38 MAPK in G0 cells also increased cellular radioresistance; however, excessive production of ROS caused P38 MAPK dephosphorylation. P38 MAPK, phosphorylated P38 MAPK, and RAC2 regulated in mutual feedback and negative feedback regulatory pathways, resulting in the radioresistance of G0 cells. 相似文献
13.
Root growth inhibition and radial root swelling were the characteristic symptoms of barley root tips after the short-term exposure of roots to 15 and 30 μM Cd. Higher Cd concentrations caused extensive cell death and root growth arrest. Enhanced lipid peroxidation was observed as early as 1 h after the short-term treatment in a Cd concentration-dependent manner. In contrast to lipid peroxidation, the induction of lipoxygenase activity was detected only 3 h after the exposure of roots to 15 or 30 μM Cd. In addition, it was not observed in 60 μM Cd-treated root tips. The highest lipoxygenase activity was detected 6 h after 15 μM Cd treatment in the meristematic and elongation zone of root tip and was probably associated with the radial expansion of cells. Our results indicate that the upregulation of lipoxygenase is an important component of stress response in barley roots to toxic Cd. It is probably involved in the morphological stress response of root tips or/and in the alleviation of Cd-induced toxic alterations in plant cell membranes, but it is not responsible for the Cd-induced harmful lipid peroxidation and cell death. 相似文献
14.
Chang CC Ball L Fryer MJ Baker NR Karpinski S Mullineaux PM 《The Plant journal : for cell and molecular biology》2004,38(3):499-511
ASCORBATE PEROXIDASE 2 (APX2) encodes a key enzyme of the antioxidant network. In excess light-stressed Arabidopsis leaves, photosynthetic electron transport (PET), hydrogen peroxide (H(2)O(2)) and abscisic acid (ABA) regulate APX2 expression. Wounded leaves showed low induction of APX2 expression, and when exposed to excess light, APX2 expression was increased synergistically. Signalling pathways dependent upon jasmonic acid (JA), chitosan and ABA were not involved in the wound-induced expression of APX2, but were shown to require PET and were preceded by a depressed rate of CO(2) fixation. This led to an accumulation of H(2)O(2) in veinal tissue. Diphenyl iodonium (DPI), which has been shown previously to be a potent inhibitor of H(2)O(2) accumulation in the veins of wounded leaves, prevented induction of APX2 expression probably by inhibition of PET. Thus, the weak induction of APX2 expression in wounded leaves may require H(2)O(2) and PET only. As in other environmental stresses, wounding of leaves resulted in decreased photosynthesis leading to increased reactive oxygen species (ROS) production. This may signal the induction of many 'wound-responsive' genes not regulated by JA-dependent or other known JA-independent pathways. 相似文献
15.
Klamt F Dal-Pizzol F Ribeiro NC Bernard EA Benfato MS Moreira JC 《Molecular and cellular biochemistry》2000,208(1-2):71-76
We investigated retinol effects in ornithine decarboxylase activity in Sertoli cells. We also tested the hypothesis that free radical scavengers and iron chelators may attenuate the effect of retinol. Sertoli cells isolated from 15-day-old Wistar rats were previously cultured for 48 h and then treated with retinol by 24 h with or without mannitol (1 mM) or 1,10 phenanthroline (100 M). We measured ornithine decarboxylase and catalase activities and malondialdehyde concentrations in response to retinol treatment. In response to 7 M retinol treatment ornithine decarboxylase activity increased 30%. Retinol-induced ornithine decarboxylase activity was significantly decreased by addition of free radical scavenger (mannitol) or iron chelator (1,10 phenanthroline). In addition the same effect was observed in catalase increased activity and in malondialdehyde concentrations. These results suggest that retinol treatment induced ornithine decarboxylase and catalase activity and increased malondialdehyde concentration. These effects appear to be mediate by ROS. 相似文献
16.
17.
The effects of ascorbic acid, iron and ADP on hyaluronic acid, a compound present in inflamed joints, were investigated in an in vitro system. Ascorbic acid induces degradation of hyaluronic acid which increased in the presence of FeCl, and which is additionally stimulated by ADP chelated ferric ions. The hyaluronic acid degrading reactions induced by the Fe-III/ADP/ascorbic acid system were inhibited by catalase and formate to various extents whereas the presence of superoxide dismutase did not exert any inhibitory effect. Desferrioxamine, a specific iron chelator, completely inhibited hyaluronic acid depolymerisation by ascorbic acid as well as in combination with FeCl3 or FeCl3/ADP, respectively. We suggest that the ultimate hyaluronic acid degrading species is OH', generated via the Fe-III/ADP catalysed Haber Weiss reaction. There is also an indication for the involvement of perferryl or/and ferryl species in the degradation process. 相似文献
18.
《Free radical research》2013,47(1-5):85-92
The effects of ascorbic acid, iron and ADP on hyaluronic acid, a compound present in inflamed joints, were investigated in an in vitro system. Ascorbic acid induces degradation of hyaluronic acid which increased in the presence of FeCl, and which is additionally stimulated by ADP chelated ferric ions. The hyaluronic acid degrading reactions induced by the Fe-III/ADP/ascorbic acid system were inhibited by catalase and formate to various extents whereas the presence of superoxide dismutase did not exert any inhibitory effect. Desferrioxamine, a specific iron chelator, completely inhibited hyaluronic acid depolymerisation by ascorbic acid as well as in combination with FeCl3 or FeCl3/ADP, respectively. We suggest that the ultimate hyaluronic acid degrading species is OH', generated via the Fe-III/ADP catalysed Haber Weiss reaction. There is also an indication for the involvement of perferryl or/and ferryl species in the degradation process. 相似文献
19.
Arion Kennedy Kristina Martinez Soonkyu Chung Kathy LaPoint Robin Hopkins Soren F. Schmidt Kenneth Andersen Susanne Mandrup Michael McIntosh 《Journal of lipid research》2010,51(7):1906-1917
We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) induced inflammation and insulin resistance in primary human adipocytes by activating nuclear factor κB (NFκB) and extracellular signal-related kinase (ERK) signaling. In this study, we demonstrated that the initial increase in intracellular calcium ([Ca2+]i) mediated by 10,12 CLA was attenuated by TMB-8, an inhibitor of calcium release from the endoplasmic reticulum (ER), by BAPTA, an intracellular calcium chelator, and by D609, a phospholipase C (PLC) inhibitor. Moreover, BAPTA, TMB-8, and D609 attenuated 10,12 CLA–mediated production of reactive oxygen species (ROS), activation of ERK1/2 and cJun-NH2-terminal kinase (JNK), and induction of inflammatory genes. 10,12 CLA–mediated binding of NFκB to the promoters of interleukin (IL)-8 and cyclooxygenase (COX)-2 and induction of calcium-calmodulin kinase II (CaMKII) β were attenuated by TMB-8. KN-62, a CaMKII inhibitor, also suppressed 10,12 CLA–mediated ROS production and ERK1/2 and JNK activation. Additionally, KN-62 attenuated 10,12 CLA induction of inflammatory and integrated stress response genes, increase in prostaglandin F2α, and suppression of peroxisome proliferator activated receptor γ protein levels and insulin-stimulated glucose uptake. These data suggest that 10,12 CLA increases inflammation and insulin resistance in human adipocytes, in part by increasing [Ca2+]i levels, particularly calcium from the ER. 相似文献