首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atherosclerosis-related vascular complications in beta-thalassemia/hemoglobin E (beta-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change in the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of alpha-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage.  相似文献   

2.
The aim of this study was to examine the effect of three structurally different anticancer drugs-the pro-oxidative anthracyclines doxorubicin (DOX) and aclarubicin (ACL), and antioxidative anthraquinone mitoxantrone (MTX) on the fluidity of plasma membrane of immortalized rodent fibroblasts using fluorescence spectroscopy and electron spin resonance (ESR) techniques. Two kinds of fluorescent probes (TMA-DPH and 12-AS) and spin labels (5-DS and methyl-12-DS) were used to monitor fluidity in the hydrophobic core and in the polar headgroup region of the lipid bilayer. Immortalized hamster B14 and NIH 3T3 mouse fibroblasts were exposed to DOX, ACL and MTX. We demonstrate that these drugs influence predominantly the hydrophobic core of the lipid bilayer, inducing significant decrease in its fluidity at low concentrations (2-5 microM). A decreased membrane fluidity at the surface of the lipid bilayer was observed only at a higher concentration (20 microM) of the drugs, which indicates that DOX, ACL and MTX intercalate mainly into the hydrophobic core of the membrane, thereby perturbing its structure.  相似文献   

3.
BackgroundVitamin E and its derivatives, namely, the tocopherols, are known antioxidants, and numerous clinical trials have investigated their role in preventing cardiovascular disease; however, evidence to date remains inconclusive. Much of the in vitro research has focused on tocopherol's effects during low-density lipoprotein (LDL) oxidation, with little attention being paid to very LDL (VLDL) and high-density lipoprotein (HDL). Also, it is now becoming apparent that γ-tocopherol may potentially be more beneficial in relation to cardiovascular health.ObjectivesDo α- and γ-tocopherols become incorporated into VLDL, LDL and HDL and influence their oxidation potential in an in vitro and ex vivo situation?DesignFollowing (i) an in vitro investigation, where plasma was preincubated with increasing concentrations of either α- or γ-tocopherol and (ii) an in vivo 4-week placebo-controlled intervention with α- or γ-tocopherol. Tocopherol incorporation into VLDL, LDL and HDL was measured via high-pressure liquid chromatography, followed by an assessment of their oxidation potential by monitoring conjugated diene formation.ResultsIn vitro: Both tocopherols became incorporated into VLDL, LDL and HDL, which protected VLDL and LDL against oxidation. However and surprisingly, the incorporation into HDL demonstrated pro-oxidant properties. Ex vivo: Both tocopherols were incorporated into all three lipoproteins, protecting VLDL and LDL against oxidation; however, they enhanced the oxidation of HDL.ConclusionsThese results suggest that α- and γ-tocopherols display conflicting oxidant activities dependent on the lipoprotein being oxidized. Their pro-oxidant activity toward HDL may go some way to explain why supplementation studies with vitamin E have not been able to display cardioprotective effects.  相似文献   

4.
The effect of the sodium cyanate-induced carbamylation (carbamoylation) of proteins in erythrocytes was studied using spin labelling and spectrophotometric methods. The experiments were conducted in whole blood and in erythrocytes in phosphate buffer using 25 mmol/L of sodium cyanate. Lipid membrane fluidity was determined using three spin-labelled fatty acids: 5-, 12- and 16-doxylstearic acids (5-DS, 12-DS, 16-DS). Internal viscosity was measured with Tempamine, using also EPR spectroscopy. Osmotic fragility was determined spectrophotometrically. Incubation of whole blood with sodium cyanate led to an increase in lipid membrane fluidity in the deeper region of the lipid layer, indicated by 12- and 16-doxylstearic acid, and a decrease near the surface (5-DS). Statistically significant results were obtained for the internal viscosity and osmotic fragility of erythrocytes. An increase in internal viscosity and increase in osmotic fragility were found in erythrocytes after incubation of whole blood, as well as in erythrocytes incubated with sodium cyanate in buffer. Alterations in internal viscosity were stronger in erythrocytes incubated with sodium cyanate in blood than in erythrocytes in the buffer. On the other hand, higher osmotic fragility was observed for erythrocytes in the buffer.  相似文献   

5.
《Free radical research》2013,47(4):229-246
Vitamin E includes eight naturally occurring fat-soluble nutrients called tocopherols and dietary intake of vitamin E activity is essential in many species. α-Tocopherol has the highest biological activity and the highest molar concentration of lipid soluble antioxidant in man. Deficiency of vitamin E may cause neurological dysfunction, myopathies and diminished erythrocyte life span. α-Tocopherol is absorbed via the lymphatic pathway and transported in association with chylomicrons. In plasma α-tocopherol is found in all lipoprotein fractions, but mostly associated with apo B-containing lipoproteins in man. In rats approximately 50% of α-tocopherol is bound to high density lipoproteins (HDL). After intestinal absorption and transport with chylomicrons α-tocopherol is mostly transferred to parenchymal cells of the liver were most of the fat-soluble vitamin is stored. Little vitamin E is stored in the non-parenchymal cells (endothelial, stellate and Kupffer cells). α-Tocopherol is secreted in association with very low density lipoprotein (VLDL) from the liver. In the rat about 90% of total body mass of α-tocopherol is recovered in the liver, skeletal muscle and adipose tissue. Most α-tocopherol is located in the mitochondrial fractions and in the endoplasmic reticulum, whereas little is found in cytosol and peroxisomes. Clinical evidence from heavy drinkers and from experimental work in rats suggests that alcohol may increase oxidation of α-tocopherol, causing reduced tissue concentrations of α-tocopherol. Increased demand for vitamin E has also been observed in premature babies and patients with malabsorption, but there is little evidence that the well balanced diet of the healthy population would be improved by supplementation with vitamin E.  相似文献   

6.
Opisthorchis viverrini infection induces inflammation-mediated oxidative stress and liver injury, which may alter α-tocopherol and lipid metabolism. We investigated plasma α-tocopherol and lipid profiles in hamsters infected with O. viverrini. Levels of α-tocopherol, cholesterol, and low-density lipoprotein increased in the acute phase of infection. In the chronic phase, α-tocopherol decreased, while triglyceride and very low-density lipoprotein increased. Notably, high-density lipoprotein decreased both in the acute and chronic phases. In the liver, cholesteryl oleate, triolein, and oleic acid decreased in the acute phase, and increased in the chronic phase. Such chronological changes were negatively correlated with the plasma α-tocopherol level. The expression of α-tocopherol-related molecules, ATP-binding cassette transporter A1 (ABCA1) and α-tocopherol transfer protein, increased throughout the experiment. These results suggest that O. viverrini infection profoundly affects on lipid and α-tocopherol metabolism in due course of infection.  相似文献   

7.
An apolipoprotein (apo) E-rich and an apo E-poor fraction of high-density lipoprotein (HDL) were isolated from four healthy men by heparin-Sepharose affinity chromatography. On a cholesterol basis, the apo E-poor HDL fraction contained a third more α- and γ-tocopherol and about a third less α- and β-carotene than the apo E-rich HDL fraction. Plasma concentrations of HDL cholesterol were highly correlated with the contribution of the apo E-rich HDL subfraction to total HDL α-tocopherol (r = − 0.990, P < 0.001).  相似文献   

8.
The research was carried out to evaluate the effect of different α-tocopherol concentrations in lamb meat on oxidative stability during storage in high-oxygen atmosphere. Thirty-six lambs were randomly distributed to four groups and given diets containing four levels of vitamin E (20, 270, 520 and 1020 mg vitamin E/kg feed) from an initial weight of 13.2 ± 0.5 kg to a slaughter weight of 26.2 ± 0.3 kg. Supplementation of the diet with vitamin E increased (P < 0.001) the concentration of α-tocopherol in the meat and concentrations were obtained in the 0.46 to 4.14 mg/kg meat range. Broken-line analysis of data indicated a target dietary vitamin E supplementation of 287 mg/kg feed, which corresponded with a concentration of 2.26 mg α-tocopherol/kg meat. α-Tocopherol in meat was highly correlated with the oxidation of lipids and pigments. Broken-line analysis of data indicated the target α-tocopherol concentration in lamb for improved protection against lipid and pigment oxidation during 14, 21 and 28 days of storage in high-oxygen atmosphere was in the range 1.87 to 2.37 mg/kg meat. These concentrations of α-tocopherol in the meat made it possible to maintain the indicator values of lipid and pigment oxidation below the values considered in the bibliography as unacceptable to the consumer.  相似文献   

9.
In this study the membrane fluidity of fibroblasts under different pharmacological treatment was investigated. Two drugs, hydralazine and procainamide, were used to treat the immortalized mouse NIH 3T3 and hamster B14 fibroblasts. Membrane lipid dynamics was measured by fluorescence spectroscopy and electron spin resonance techniques. Two kinds of fluorescent probes (TMA-DPH and 12-(9-anthroyloxy)-stearic acid (12-AS)) and two spin labels (5-doxylstearic acid (5-DS) and 12-doxylstearic acid (12-DS)) were used to monitor fluidity in the upper polar and in the hydrophobic core regions of the lipid bilayer. The drugs influenced the membrane hydrophobic core, of which hydralazine induced fluidization and procainamide increased the rigidity. The membrane fluidity at the surface of the lipid bilayer was not modified by the drugs which indicates that both drugs intercalated mainly into the inner core of the cell membrane.  相似文献   

10.
Based on the oxidation hypothesis high doses of α-tocopherol have been advocated to prevent atherosclerosis, but clinical trials failed to demonstrate a benefit. As specific oxylipids activate PPARγ and LXRα, master regulators of lipid metabolism and cholesterol exporters, we hypothesized, that high dose α-tocopherol might interfere with reverse cholesterol transport out of the vessel wall. Human THP-1 cells, a foam cell model, were preincubated with α-tocopherol or carrier before exposure to oxidized LDL, delipidated HDL or control buffer. Specific mRNAs were quantified by real-time RT-PCR, LXRα activation by a reporter gene assay and cellular cholesterol homeostasis by oxLDL and dHDL facilitated uptake and efflux assays. α-Tocopherol significantly reduced baseline expression and stimulation by oxLDL of LXRα activity, CD36, ABCA1, and ABCG1. α-Tocopherol also reversed the suppression of CD36 and ABCA1 by dHDL. Thus α-Tocopherol compromises cellular lipid scavenging and channelling of cholesterol into reverse transport out of the vessel wall.  相似文献   

11.
The aim of this study was to use direct electron paramagnetic resonance (EPR) spectroscopy at 37 °C and spin trapping techniques to study radical species formed during horseradish peroxidase/H2O2-initiated low-density lipoprotein (LDL) oxidation. Using direct EPR, we obtained evidence for the formation not only of the α-tocopheroxyl radical but also of a protein radical(s), assigned to a tyrosyl radical(s) of apolipoprotein B-100 (apo B-100). Spin trapping with 2-methyl-2-nitrosopropane revealed (i) the formation of a mobile adduct with β-hydrogen coupling assigned to a lipid radical and (ii) a partially immobilised adduct detected in LDL as well as in apo B-100, assigned after proteolytic digestion to the trapping of a radical centred on a tertiary carbon atom of an aromatic residue, probably tyrosine. Our results support the hypothesis that radicals are initiators of the oxidative process, and show that their formation is an early event in peroxidase-mediated oxidation. We also tested the effects of resveratrol (RSV), a polyphenolic antioxidant present in red wine. Our data indicate that 1–10 μM RSV is able to accelerate α-tocopherol consumption, conjugated dienes formation and the decay kinetics of LDL-centred radicals. Since phenols are substrates for peroxidases, this result may be ascribed to a RSV-mediated catalysis of peroxidase activity.  相似文献   

12.
Arachidonate cyclo-oxygenase (prostaglandin synthetase; prostaglandin endoperoxide synthetase; EC 1.14.99.1) was purified from sheep platelets. The purification procedure involved hydrophobic column chromatography using either Ibuprofen-Sepharose, phenyl-Sepharose or arachidic acid-Sepharose as the first step followed by metal-chelate Sepharose and haemin-Sepharose affinity chromatography. The purified enzyme (Mr approximately 65,000) was homogeneous as observed by SDS/polyacrylamide-gel electrophoresis and silver staining. The enzyme was a glycoprotein with mannose as the neutral sugar. Haemin or haemoglobin was essential for activity. The purified enzyme could bind haemin exhibiting a characteristic absorption maximum at 410 nm. The enzyme after metal-chelate column chromatography could undergo acetylation by [acetyl-3H]aspirin. The labelled acetylated enzyme could not bind to haemin-Sepharose, presumably due to acetylation of a serine residue involved in the binding to haemin. The acetylated enzyme also failed to show its characteristic absorption maximum at 410 nm when allowed to bind haemin.  相似文献   

13.
Superoxide (O2-)-generating membranes of pig blood neutrophils were studied by the ESR spin-label method. Neutrophils were spin-labeled with doxylstearic acids, consisting of nitroxide free radicals bonded to the 5, 7, 12, or 16 position of stearic acid (5-, 7-, 12-, or 16-DS), to detect the reduction of their nitroxide radicals at different positions in the membrane. The spin-labeled cells were then stimulated with phorbol myristate acetate (PMA). Stimulation of the labeled cells resulted in a marked decrease in the spin concentration of 5-DS due to the reduction by O2-, but not in those of the other three DS labels. This reduction of 5-DS was completely inhibited by copper salicylate (CS), a hydrophobic and permeable O2(-)-scavenger, but not by superoxide dismutase (SOD). CS was not inhibitory on the respiratory burst, i.e., O2(-)-generating activity of neutrophils. On the contrary, if the spin-labels were present in the extracellular medium, SOD inhibited the reduction of all four DS labels due to O2- released from PMA-stimulated cells. These results suggest that the O2(-)-releasing site is not located at the outer surface of the plasma membrane but in an inner hydrophobic environment a short distance (around 4-5 A) from its outer surface.  相似文献   

14.
The thermal oxidation of the membranes of linoleic acid vesicles was preceded by a lag period, as long as the membranes contained low levels of preformed peroxides. Incorporation of 0.034 to 0.170 mol% of nitroxide spin label increased the length of this lag between 4.8 and 10.1 times. At the same time, the intensity of the ESR signal fell. The inclusion of as little as 0.04 mol% of butylated hydroxytoluene in the membranes also lengthened the lag period by a factor of 2.5. However, a similar molar proportion of α-tocopherol was without effect. When the linoleic acid from which vesicle membranes were formed contained between 0.45 and 1.43 mol% of peroxide, α-tocopherol produced a significant increase in the lag period, during which the antioxidant was gradually oxidized.  相似文献   

15.
Background: Much experimental evidence suggests that lipid oxidation is important in atherogenesis and in epidemiological studies dietary antioxidants appear protective against cardiovascular events. However, most large clinical trials failed to demonstrate benefit of oral antioxidant vitamin supplementation in high-risk subjects. This paradox questions whether ingestion of antioxidant vitamins significantly affects lipid oxidation within established atherosclerotic lesions. Methods and results: This placebo-controlled, double blind study of 104 carotid endarterectomy patients determined the effects of short-term α-tocopherol supplementation (500 IU/day) on lipid oxidation in plasma and advanced atherosclerotic lesions. In the 53 patients who received α-tocopherol there was a significant increase in plasma α-tocopherol concentrations (from 32.66±13.11 at baseline to 38.31±13.87 (mean±SD) μmol/l, p&lt;0.01), a 40% increase (compared with placebo patients) in circulating LDL-associated α-tocopherol (p&lt;0.0001), and their LDL was less susceptible to ex vivo oxidation than that of the placebo group (lag phase 115.3±28.2 and 104.4±15.7 min respectively, p&lt;0.02). Although the mean cholesterol-standardised α-tocopherol concentration within lesions did not increase, α-tocopherol concentrations in lesions correlated significantly with those in plasma, suggesting that plasma α-tocopherol levels can influence lesion levels. There was a significant inverse correlation in lesions between cholesterol-standardised levels of α-tocopherol and 7β-hydroxycholesterol, a free radical oxidation product of cholesterol. Conclusions: These results suggest that within plasma and lesions α-tocopherol can act as an antioxidant. They may also explain why studies using &lt;500 IU α-tocopherol/day failed to demonstrate benefit of antioxidant therapy. Better understanding of the pharmacodynamics of oral antioxidants is required to guide future clinical trials.  相似文献   

16.
Lipoxygenase is suggested to be involved in the early event of atherosclerosis by inducing plasma low-density lipoprotein (LDL) oxidation in the subendothelial space of the arterial wall. Since flavonoids such as quercetin are recognized as lipoxygenase inhibitors and they occur mainly in the glycoside form, we assessed the effect of quercetin and its glycosides (quercetin 3-O-β-glucopyranoside, Q3G; quercetin 4′-O-β-glucopyranoside, Q4′G; quercetin 7-O-β-glucopyranoside, Q7G) on rabbit reticulocyte 15-lipoxygenase (15-Lox)-induced human LDL lipid peroxidation and compared it with the inhibition obtained by ascorbic acid and α-tocopherol, the main water-soluble and lipid-soluble antioxidants in blood plasma, respectively. Quercetin inhibited the formation of cholesteryl ester hydroperoxides (CE-OOH) and endogenous α-tocopherol consumption effectively throughout the incubation period of 6 h. Ascorbic acid exhibited an effective inhibition only in the initial stage and LDL preloaded with fivefold α-tocopherol did not affect the formation of CE-OOH compared with the native LDL. CE-OOH formation was inhibited by both quercetin and quercetin monoglucosides in a concentration-dependent manner. Quercetin, Q3G, and Q7G exhibited a higher inhibitory effect than Q4′G (IC50: 0.3–0.5 μM for quercetin, Q3G, and Q7G and 1.2 μM for Q4′G). While endogenous α-tocopherol was completely depleted after 2 h of LDL oxidation, quercetin, Q7G, and Q3G prevented the consumption of α-tocopherol. Quercetin and its monoglucosides were also exhausted during the LDL oxidation. These results indicate that quercetin glycosides as well as its aglycone are capable of inhibiting lipoxygenase-induced LDL oxidation more efficiently than ascorbic acid and α-tocopherol.  相似文献   

17.
The mutual arrangement of a phospholipid molecule containing a peroxyl radical and a molecule of membrane-acting antioxidant α-tocopherol (vitamin E) in the lipid bilayer has been studied by molecular dynamics simulation. The geometry of molecules in the membrane is revealed at which the hydrogen atom can be transferred from the exocyclic hydroxyl of α-tocopherol to the peroxyl lipid radical. It is shown that, under equilibrium conditions, the peroxidized fatty acid segment rises nearer to the polar surface of the membrane, while α-tocopherol submerges into the hydrophobic part of the lipid bilayer.  相似文献   

18.
The antioxidative activity of hydroxylamines was evaluated for the oxidation of tetralin at 61°C and linoleic acid micelles in an aqueous dispersion at 37°C, induced by an azo initiator. The antioxidative efficacy of the hydroxylamines for the oxidation of tetralin was smaller than that of α-tocopherol. However, the hydroxylamines showed more potent antioxidative activity than that of the α-tocopherol against the oxidation of linoleic acid micelles. On the basis of the results of an ESR study and the oxidation product obtained, it is suggested that active position in hydroxylamines depend not only on hydroxyl hydrogen-atom, but also on the allylic hydrogen atom.  相似文献   

19.
Rats were cannulated in the major mesenteric lymph duct and given an intraduodenal bolus of unlabeled and α-[3H]tocopherol, and [14C]oleic acid in soybean oil. The appearance of α-tocopherol in lymph was negligible during the first 2 h and peaked 4–15 h after feeding, whereas no detectable amount was recovered in the portal vein. Intestinal absorption via the lymphatic pathway was 15.4 ± 8.9% (n = 10) and 45.9 ± 10.8% (n = 4) for α-tocopherol and [14C]oleic acid, respectively. About 99% of α-tocopherol in lymph was associated with the chylomicron fraction (d < 1.006 g/ml). In non-fasting rats, 51% of serum α-tocopherol was associated with chylomicrons/VLDL (very-low-density lipoprotein, d < 1.006 g/ml) and 47% with HDL (high-density lipoprotein, 1.05 < d < 1.21 g/ml). Our study revealed that the liver, skeletal muscle and adipose tissue contain approx. 92% of the total mass of α-tocopherol measured in ten different organs. Parenchymal and nonparenchymal liver cells contributed to 75% and 25% of the total mass of α-tocopherol in the liver, respectively.  相似文献   

20.
The action of 12-O-tetradecanoyl-13-acetate (TPA) in vitro in a wide range of concentration from 10(-3) mol/l down to ultra-low doses 10(-23) mol/l and dilution 10(-24) mol/l on the microsome membranes isolated from tumor--Ehrlich ascite carcinoma (EAC) has been studied by ESR-method using two spin probes: 5- and 16-doxyl stearates (5- and 16-DS) localized in the different regions of lipid bilayer. From the ESR spectra obtained it was calculated the following parameters: an order of the long axis 5-DS (S) related to order of the fatty acids chains in the lipid bilayer; two rotation correlation times (Tc1 and Tc2) of 16-DC to estimate a microviscosity value and structural-sensitive ones. It was found the stage changes of all these parameters (increase and decrease) as compared with control level (the membranes untreated by TPA) depending on TPA concentration into the range of 10(-3)-10(-24) mol/l; in particular, the most significant shape changes of structural-sensitive parameters have been observed at TPA doses below 10(-16) mol/l. It is concluded that tumor membranes are very sensitive to TPA action in vitro in a wide range of concentration included ultra-low doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号