首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During effort overstress the reactive oxygen species act chiefly on unsaturated lipids, inducing the formation of certain peroxidation products. We have investigated malondialdehide (MDA), platelet adhesion index, and immunological activation parameters during effort overstress and administration of vitamins E and C. Biochemical measurements were performed on erythrocytes and heart homogenate. In the vitamin E supplemented group, the platelet adhesion index was constantly correlated with the MDA level (p < 0.001). There is a protecting effect concerning the oxidative stress in animals pretreated with vitamin E and C, which is expressed through the diminution of the MDA quantity both in the erythrocyte and in the heart. The physical effort required by swimming led to a decrease in the NBT test values and in the activity of the serum complement. The steady administration of vitamin E in the effort overstress, due to its antioxidant properties, causes the progressive decrease in peroxidation and platelet adhesion.  相似文献   

2.
The aim of this work was to determine the protective effects of intraperitoneally administered vitamins C and E and selenium on the lipid peroxidation (MDA), glutathione peroxidase (GSH-Px), reduced glutathione (rGSH) activities in the lens of rats induced diabetic with streptozotocin (STZ). Lenses in the diabetic control group had a slightly higher mean level of MDA compared with lenses of the vitamin E and selenium groups, although the mean levels of MDA were significantly lower in control, combination, and vitamin C groups than in the diabetic control group (p < 0.05 andp < 0.01). However, MDA levels were significantly lower in vitamin C, vitamin E, and combination groups than in controls (p < 0.01). The GSH-Px activities of lenses were significantly higher in vitamin C-, vitamin E- and selenium-injected groups than that in the diabetic control group (p < 0.01), whereas, the activity of GSH-Px was significantly lower in the diabetic control group than in the control group. In addition, the rGSH content was seen to decrease only in the vitamin C group compared to both control and diabetic control groups (p < 0.05). In conclusion, the results from these experiments indicate that vitamins C and E and selenium can protect the lens against oxidative damage, but the effect of vitamin C appears to be much greater than that of vitamin E and selenium.  相似文献   

3.
The aim of this study was to investigate the effects of supplemental antioxidant vitamins and minerals on lipid peroxidation and on the antioxidant systems in rabbits exposed to X-rays. The rabbits were divided into two experimental groups and one control group, each group containing seven rabbits. The first group (VG) received daily oral doses of vitamin E (460 mg/kg live weight) and vitamin C (100 mg/kg live weight). The second group (MG) was fed a mineral-enriched diet that contained 60 mg manganese chloride, 40 mg zinc sulfate, and 5 mg copper sulfate per kilogram of feed. The third group served as controls and received only a standard diet. Blood samples were obtained before and after the supplementation with vitamins or minerals, as well as before and after irradiation with a total dose of 550-rad X-rays. The blood samples were analyzed for their content of malondialdehyde (MDA), plasma vitamins C and E, retinol, reduced glutathione (GSH), and glutathione peroxidase activity (GPx). After irradiation, the control group showed increased levels of MDA and activity of GPx (p<0.05), whereas the levels of GSH, vitamin C, and vitamin E were decreased. In the VG, the concentration of MDA was lower (p<0.05), and the concentration of GSH and vitamins C and E were higher (p<0.05) when compared to controls. In the MG, the concentrations of MDA, GSH, vitamin C, and retinol were not affected by the mineral administration and radiation. The level of vitamin E in the MG increased with mineral administration (p<0.05), but decreased after irradiation (p<0.05). For the control group, the level of GSH was higher than in the two experimental groups. After irradiation, the VG animals had vitamin E and C levels that were higher than in MG and control groups (p<0.05). The activity of GPx was not affected by vitamin or mineral supplementation or by irradiation. We conclude that the supplementation with antioxidant vitamins and minerals may serve to reinforce the antioxidant systems, thus having a protective effect against cell damage by X-rays.  相似文献   

4.
Chronic administration of diazepam (DZP) caused an increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH) content. DZP also markedly lowered Ca2+ATPase activity. Treatment with Se plus vitamin E reduced MDA levels and increased GSH content. Our results suggest that, increased lipid peroxidation together with alteration in Ca2+ -ATPase activity may play a role in DZP induced hepatic injury and Se plus vitamin E treatment may contribute to the attenuation of DZP induced hepatotoxicity.  相似文献   

5.
We assessed oxidative stress in three different clinical conditions: smoking, human immunodeficiency virus (HIV) infection, and inflammatory bowel disease, using breath alkane output and other lipid peroxidation parameters such as plasma lipid peroxides (LPO) and malondialdehyde (MDA). Antioxidant micronutrients such as selenium, vitamin E, C, beta-carotene and carotenoids were also measured. Lipid peroxidation was significantly higher and antioxidant vitamins significantly lower in smokers compared to nonsmokers. Beta-carotene or vitamin E supplementation significantly reduced lipid peroxidation in that population. However, vitamin C supplementation had no effect. In HIV-infected subjects, lipid peroxidation parameters were also elevated and antioxidant vitamins reduced compared to seronegative controls. Vitamin E and C supplementation resulted in a significant decrease in lipid peroxidation with a trend toward a reduction in viral load. In patients with inflammatory bowel disease, breath alkane output was also significantly elevated when compared to healthy controls. A trial with vitamin E and C is underway. In conclusion, breath alkane output, plasma LPO and MDA are elevated in certain clinical conditions such as smoking, HIV infection, and inflammatory bowel disease. This is associated with lower levels of antioxidant micronutrients. Supplementation with antioxidant vitamins significantly reduced these lipid peroxidation parameters. The results suggest that these measures are good markers for lipid peroxidation.  相似文献   

6.
The aim of the study has been to determine and compare the influence upon the kidney antioxidative system, exercised by administration of vitamin E, and vitamin E in combination with methionine, under conditions of oxidative stress induced by sodium fluoride. The experiment was carried out on Wistar FL rats (adult males) that, for 35 days, were administered water, NaF, NaF with vitamin E, or vitamin E with methionine (doses: 10 mg NaF/kg of body mass/24 h, 3 mg vitamin E per 10 μl per rat for 24 h, 2 mg methionine per rat for 24 h). The influence of administered sodium fluoride and antioxidants upon the antioxidative system in kidney was examined by analyzing the concentration of malondialdehyde (MDA) and the activity of the most important antioxidative enzymes (SOD, total and both its isoenzymes, GPX, GST, GR, and CAT). The studies carried out confirmed the disadvantageous effect of the administered dose of NaF upon the antixodiative system in rats (increase in the concentration MDA, decrease activity of all antioxidative enzymes). The administration of vitamin E increased the activity of studied enzymes with the exception of glutathione reductase GR; it also reduced the procesess of lipid peroxidation. It has been found that combined doses of vitamin E and methionine were most effective in inhibiting lipid peroxidation processes. The results confirmed the antioxidative properties of methionine.  相似文献   

7.
This study was conducted to determine the effects of vitamin C (L-ascorbic acid) and vitamin E (alpha-tocopherol acetate) on serum concentrations of lipid peroxidation (MDA) and triiodothyronine (T3), thyroxine (T4), adrenocorticotropic hormone (ACTH), and some metabolite and mineral in laying hens reared at high ambient temperatures ranging from 25 degrees C to 35 degrees C. One hundred twenty laying hens (18 wk old; Hy-Line) were divided into 4 groups, 30 hens per group. The laying hens were fed either a basal diet (control) or the basal diet supplemented with either 250 mg of L-ascorbic acid/kg of diet (vitamin C), 250 mg of alpha-tocopherol acetate/kg of diet (vitamin E), or 250 mg of L-ascorbic acid plus 250 mg alpha-tocopherol acetate/kg of diet (combination). Separately or as a combination vitamins C and E increased serum vitamin C and vitamin E concentrations (p < 0.001) but decreased serum MDA concentration (p < 0.05). Serum concentrations of vitamin E and vitamin C were found highest but serum MDA concentration was lowest in the combination group. Supplemental vitamins C and E either separately or in a combination increased serum T3 and T4 concentrations (p < 0.05), whereas decreased serum ACTH concentration (p < 0.01). Serum glucose and cholesterol concentrations decreased, whereas serum protein concentration increased (p < 0.05) when vitamins C and E singly or together were added to the diet. Vitamin C and vitamin E supplementation resulted in an increase in serum concentrations of Ca, P, and K (p < 0.01) but a decrease in serum concentration of Na (p < 0.05). The results of the present study suggest that supplemental vitamin C and vitamin E alter serum lipid peroxidation, vitamin C, vitamin E and metabolite status, and diets supplemented with a combination of these two vitamins offer a good management practice in laying hens reared at high temperatures. In addition, the results suggest that dietary vitamin C and vitamin E act synergistically.  相似文献   

8.
This study was conducted to determine the effects of vitamin E and selenium (Se) on lipid peroxidation (MDA), serum and liver concentration of antioxidant vitamins, and some minerals of Japanese quails reared under heat stress (34°C). One hundred twenty 10-d-old Japanese qualis (60 males, 60 females) were randomly assigned to 4 treatment groups, 3 replicates of 10 birds each. The experiment was designed in a 2×2 factorial arrangement using two levels of vitamin E (125 and 250 mg/kg of diet) and two levels of selenium (0.1 and 0.2 mg/kg of diet). Greater dietary vitamin E and selenium inclusions resulted in a greater (p=0.001) serum vitamin E and vitamin A, but lower (p=0.001) MDA concentrations. Liver vitamin E and vitamin A concentrations increased (p=0.001) and MDA concentrations decreased (p=0.001) when both dietary vitamin E and selenium increased. No interactions between vitamin E and selenium were detected (p≥0.11) for any parameters. Increasing both dietary vitamin E and selenium caused an increase in serum concentrations of Fe and Zn (p=0.001), but a decrease in serum concentration of Cu (p=0.001). Results of the present study showed that dietary vitamin E and selenium have synergistic effects and that supplementing a combination of dietary vitamin E (250 mg/kg of diet) and selenium (0.2 mg/kg of diet) offers a good management practice to reduce heat stress-related depression in performance of Japanese quails.  相似文献   

9.
Previous reports have shown that vitamin B(6)deficiency leads to peroxidative stress in rat organs. In this paper, we evaluated the effects on lipid peroxidation of short-term (six weeks) dietary administration of marginal contents of vitamin B(6). A further risk factor of susceptibility to peroxidation was the presence of fish oil with higher contents of n-3 polyunsaturated fatty acid (LCPUFA). The contemporaneous vitamin B(6)deficiency and presence of fish oil caused a C18:2 increase, a C20:4 decrease, and replacement of some n-6 LCPUFA with n-3 LCPUFA, without changes in the unsaturation index. In liver, TBARS production did not show any differences between dietary conditions, whereas the activities of glutathione-dependent enzymes were stimulated. In heart, fish oil increased lipid peroxidation, especially in the vitamin B(6)-deficient group.  相似文献   

10.
In the present study, we report the effect of vitamin A (Vit A, retinol palpitate) on kidney lipid peroxidation and 3-nitrotyrosine (3-NT) levels induced after Escherichia coli administration to guinea pigs. Vit A was administrated intraperitoneally (i.p.) to guinea pigs at a dose 15,000 IU/kg per day for 7 days prior to E. coli injection. On day 8, the animals were injected i.p. with E. coli dosed at 12 ×109 colony forming units per kilogram. Kidneys were collected 6 h after administration of E. coli. Malondialdehyde (MDA) as a lipid peroxidation product, and 3-NT levels were measured by reverse phase high-performance liquid chromatography. There was a significant increase in MDA and 3-NT levels in lipopolysaccaharide-induced group (p<0.001). 3-NT was not detectable in kidney of normal control animals. However, Vit A administration prior to E. coli injection prevented 3-NT formation but did not prevent the rice in MDA level of kidney (p<0.001). Vit A alone did not alter the MDA level in the kidney of the control group. (Mol Cell Biochem 278: 33–37, 2005)  相似文献   

11.
The protective effect of vitamin E and reduced glutathione (GSH) against lipid peroxidation in boar semen plasma was studied. The lipid peroxidation, measured by the test for thiobarbituric acid reactive substances (TBARS), doubled in the presence of the lipid peroxidation Fe2+-sodium ascorbate-inducing system. The ascorbate-induced TBARS were inhibited by about 62% through the water-soluble vitamin E analog (TROLOX) and about 57% by GSH. In the in vivo experiments, 7 wk of oraldl-α-tocopherol acetate (1000 IU/d/animal) administration caused a significant fall in the level of the semen plasma TBARS, from 2.2±0.09 to 1.2±0.13 nmol MDA/mL. The semen plasma superoxide dismutase (SOD) and GSSG tended to increase with the time of vitamin E administration, but the increment did not reach a significant level by the seventh week. The vitamin E supplementation significantly increased the number of spermatozoa per 1 cm3 of ejaculate. The protective role of vitamin E and GSH with respect to boar semen against fatty acid peroxidation and a positive influence of vitamin E supplementation on semen quality have been evidenced.  相似文献   

12.
We aimed to investigate the influence of dietary vitamin E and diludine on growth and lipid peroxidation (malondialdehyde; MDA) in rainbow trout. Fish (1.5 g) were fed different dietary levels of vitamin E (0, 50 and 100 mg/kg) and diludine (0, 0.5 and 1 g/kg) for 10 weeks. Growth performance and feed conversion ratio (FCR) were significantly affected by dietary vitamin E (p < .05) but not diludine. Fish fed 50 mg/kg dietary vitamin E with no diludine had significantly better growth and lower FCR than those fed vitamin E free diets. Liver vitamin E content was significantly influenced by dietary vitamin E and diludine (p < .05). The highest hepatic vitamin E was in fish fed the highest dietary vitamin E and diludine levels. Hepatic MDA level was significantly affected by dietary vitamin E and diludine (p < .05), decreasing with the increase in both dietary vitamin E and diludine. According to our results, diludine had no significant effect on growth; however, decreased hepatic lipid peroxidation independent of vitamin E. Our results reveal that 50 mg/kg vitamin E content is suitable for optimal growth and FCR in rainbow trout juveniles. However, dose dependent effects of dietary diludine remain uncertain and need further researches.  相似文献   

13.
In this study, the effects of the two Schiff base derivatives and their metal complexes were tested for MDA concentration, which is an indicator of lipid peroxidation, antioxidant vitamin A, vitamin E, and vitamin C levels in cell culture. A comparison was performed among the groups and it was observed that MDA, vitamin A, vitamin E, and vitamin C concentrations were statistically changed. According to the results, all compounds caused a significant oxidative stress without Zn complexes. Moreover, Mn(II), Cu(II), Zn(II), and Ni(II) complexes of Schiff bases derived from a condensation of 1,2‐bis (p‐aminophenoxy) ethane with naphthaldehydes and 4‐methoxy benzaldehyde were examined in terms of antitumor activity against MCF‐7 human breast cancer and L1210 murine leukemia cells. Furthermore, the derivatives were tested for antioxidative and prooxidative effects on MCF‐7 breast cancer cells. The compounds which were tested revealed that there was an antitumor activity for MCF‐7 and L 1210 cancer cells. Also, some of the compounds induced oxidative harmful.  相似文献   

14.
Diabetes mellitus is associated with diabetic impairment of testicular function, ultimately leading to reduced fertility. Its etiology may involve oxidative damage by reactive oxygen substances, and protection against this damage can be offered by antioxidant supplementation. The aim of this study was to investigate the effects of intraperitoneal administration of vitamin C and E, selenium (Se), and vitamin E plus Se (COM) on concentrations of lipid peroxide (as malondialdehyde; MDA), reduced glutathione (GSH), and vitamin E concentrations and glutathione peroxidase (GSH-Px) activity in the testes of rats with diabetes induced by streptozotocin (STZ). Sixty groups were used (10 animals each) and these animals were initially allocated to two groups: control group and diabetic group. The diabetic group was subdivided into five groups as follows: diabetic control (DC), vitamin E, Se, COM, and vitamin C. Animals in the DC group and vitamin C, vitamin E, Se, and COM groups were made diabetic by the injection of STZ on 4 d after an injection of vitamins C and E, Se, and COM. Those vitamins and Se were also administered for 21 consecutive days. The MDA, vitamin E, GSH levels, and GSH-Px activities in testes were determined. Although the vitamin E concentration was higher in the control than in the DC group, the MDA levels were found to be lower in the control than in the DC group. The MDA levels in the testes samples of vitamin C, vitamin E, Se, and COM groups were lower than the DC group. However, GSH-Px activity and GSH levels in the testes were not significantly different between the control and DC groups. Vitamin E concentrations in the vitamin C, vitamin E, Se, and COM groups and GSH levels and GSH-Px activities in the Se, COM, and vitamin C groups were higher than either the control or DC group. The results indicate that reactive oxygen substances may be involved in possible testicular complications in diabetes of rats. Administration of vitamins C and E and Se reduced the testicular lipid peroxidation; these vitamins and Se had significant protective effects on testes of rats against oxidative damage in diabetes.  相似文献   

15.
Methidathion (MD) phosphorodithioic acid S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl ester is the organophosphate insecticide (OPI) most commonly used worldwide in the pest control of crops. Subchronic MD exposure was evaluated for its effects on lipid peroxidation, the serum activities of cholinesterase (ChE), and enzymes concerning liver damage, and the protective effects of combination of vitamins E and C in albino rats. Additionally, the histopathological changes in liver tissue were examined. Experimental groups were as follows: control group; a group treated with 5 mg/kg body weight MD (MD group); and a group treated with 5 mg/kg body wight MD plus vitamin E plus vitamin C (MD+AO group). The MD and MD+AO groups were treated orally with MD on five days a week for 4 weeks. The serum activities of cholinesterase (ChE), alanine transferase (ALT), aspartate amiotransferase (AST), lactate dehydrogenase (LDH), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), and the concentration of malondialdehyde (MDA) and liver histopathology were studied. In serum samples, MD significantly increased MDA concentration and ALP, AST, GGT, LDH activities but decreased the ALT and ChE activities. In the MD+AO group, MDA level and ALP, AST, LDH activities were significantly decreased and ChE activity was increased compared to the MD group. Histopathological changes found in liver tissue of rats treated with MD included were infiltration with mononuclear cells in all portal areas, sinusoidal dilatation, and focal microvesicular steatosis and hydropic degenerations in parenchymal tissue. The severity of these lesions was reduced by administration of vitamins. From these results, it can be concluded that subchronic MD causes liver damage, and lipid peroxidation may be a molecular mechanism involved in MD-induced toxicity. Furthermore, the combination of vitamins E and C can reduce the toxic effects of MD on liver tissue of rats.  相似文献   

16.
Diabetes mellitus is associated with diabetic impairment of testicular function, ultimately leading to reduced fertility. Its etiology may involve oxidative damage by reactive oxygen substances, and protection against this damage can be offered by antioxidant supplementation. The aim of this study was to investigate the effects of intraperitoneal administration of vitamin C and E, selenium (Se), and vitamin E plus Se (COM) on concentrations of lipid peroxide (as malondialdehyde; MDA), reduced glutathione (GSH), and vitamin E concentrations and glutathione peroxidase (GSH-Px) activity in the testes of rats with diabetes induced by streptozotocin (STZ). Sixty groups were used (10 animals each) and these animals were initially allocated to two groups: control group and diabetic group. The diabetic group was subdivided into five groups as follows: diabetic control (DC), vitamin E, Se, COM, and vitamin C. Animals in the DC group and vitamin C, vitamin E, Se, and COM groups were made diabetic by the injection of STZ on 4 d after an injection of vitamins C and E, Se, and COM. Those vitamins and Se were also administered for 21 consecutive days. The MDA, vitamin E, GSH levels, and GSH-Px activities in testes were determined. Although the vitamin E concentration was higher in the control than in the DC group, the MDA levels were found to be lower in the control than in the DC group. The MDA levels in the testes samples of vitamin C, vitamin E, Se, and COM groups were lower than the DC group. However, GSH-Px activity and GSH levels in the testes were not significantly different between the control and DC groups. Vitamin E concentrations in the vitamin C, vitamin E, Se, and COM groups and GSH levels and GSH-Px activities in the Se, COM, and vitamin C groups were higher than either the control or DC group. The results indicate that reactive oxygen substances may be involved in possible testicular complications in diabetes of rats. Administration of vitamins C and E and Se reduced the testicular lipid peroxidation; these vitamins and Se had significant protective effects on testes of rats against oxidative damage in diabetes. Abstract of the study was presented at the conference Trace Elements in Men and Animals-11. June 2–6, 2002; Dr. Naziroğlu has been awarded a TEMA11 Investigative Scientist Award.  相似文献   

17.
Although the use of vitamin E supplements has been associated with a reduction in coronary events, assumed to be due to lowered lipid peroxidation, there are no previous long-term clinical trials into the effects of vitamin C or E supplementation on lipid peroxidation in vivo. Here, we have studied the long-term effects of vitamins C and E on plasma F2-isoprostanes, a widely used marker of lipid peroxidation in vivo. As a study cohort, a subset of the “Antioxidant Supplementation in Atherosclerosis Prevention” (ASAP) study was used. ASAP is a double-masked placebo-controlled randomized clinical trial to study the long-term effect of vitamin C (500 mg of slow release ascorbate daily), vitamin E (200 mg of d-α-tocopheryl acetate daily), both vitamins (CellaVie®), or placebo on lipid peroxidation, atherosclerotic progression, blood pressure and myocardial infarction (n = 520 at baseline). Lipid peroxidation measurements were carried out in 100 consecutive men at entry and repeated at 12 months. The plasma F2-isoprostane concentration was lowered by 17.3% (95% CI 3.9–30.8%) in the vitamin E group (p = 0.006 for the change, as compared with the placebo group). On the contrary, vitamin C had no significant effect on plasma F2-isoprostanes as compared with the placebo group. There was also no interaction in the effect between these vitamins. In conclusion, long-term oral supplementation of clinically healthy, but hypercholesterolemic men, who have normal vitamin C and E levels with a reasonable dose of vitamin E lowers lipid peroxidation in vivo, but a relatively high dose of vitamin C does not. This observation may provide a mechanism for the observed ability of vitamin E supplements to prevent atherosclerosis.  相似文献   

18.
《Reproductive biology》2020,20(1):63-74
In this study, we investigated the mechanism of oxidative damage induced by nicotine and the efficacy of vitamin E, an integral component of cellular membranes, against the damage in follicular/granulosa cells of rat ovaries. The animals were randomly divided into 4 groups; control, nicotine, nicotine + vitaminE, vitamin E (n = 8, per each group). Nicotine and vitamin E were administrated intraperitoneally 1 mg/kg/day and 200 mg/kg/day, respectively, once daily for 2 weeks. Nicotine increased lipid peroxide levels such as lipid peroxide (LPO) and malondialdehyde (MDA) in serum, 4-hydroxynonenal (4-HNE) in granulosa cells and apoptotic granulosa cells in the ovary. Positive correlation occurred between the findings of LPO markers and TUNEL labeling. Level of 17-β estradiol (E2), number of follicles and granulosa cell proliferation decreased with nicotine treatment and negatively correlated with LPO levels and apoptosis in granulosa cells. Ultrastructural study of nicotine treated rat ovaries showed mitochondrial damage and autophagosomes in the granulosa cells. The administration of nicotine and vitamin E together, revealed an increase in E2 level, granulosa cell proliferation and the number of healthy follicles associated with decrease in LPO, MDA, 4-HNE levels and TUNEL reactivity in a manner correlated with each other, compared to the nicotine group. Vitamin E showed to alleviate mitochondrial damage and decrease the number of autophagosomes in granulosa cells. These results suggest that lipid peroxidation may be one of the nicotine’ damage mechanisms on folliculogenesis and vitamin E may prevent nicotine-induced follicular damage through reducing lipid peroxidation level in granulosa cells.  相似文献   

19.
Expression of antioxidant enzymes (AOE), an important mechanism in the protection against oxidative stress, could be modified by the redox status of the cells. The aim of this project was to evaluate the role of vitamin E deficiency in association with a high-cholesterol diet in the hepatic lipid peroxidation and the expression of AOE. Two groups of 6 male rats were fed with a high-cholesterol or a high-cholesterol vitamin E-deficient diet. All animals were sacrificed at 72 days of treatment. Liver lipid peroxidation index (Malondialdehyde; MDA) and hepatic AOE were evaluated. Total liver RNA was extracted, and the steady state messenger RNA (mRNA) levels of glutathion peroxydase, manganese superoxide dismutase, Cu/Zn superoxide dismutase and catalase were examined by northern blot. After 72 days on the diet, a significant increase in the lipid peroxidation index was observed in the vitamin E deficient group (MDA : 4.45 +/- 0.29 nmol/mg protein versus 3.65 +/- 0.1 nmol/mg protein in vitamin E normal group). Despite this oxidative stress, the activities and mRNA levels of liver AOE were not significantly different in the 2 groups. These preliminary results show that chronic vitamin E deficiency associated with high cholesterol diet is able to increase lipid peroxidation without modulation of AOE expression and activity in the liver. This suggests that beneficial effects of dietary vitamin E are due to a plasma antioxidant effect or a cell mediated action, rather than to a specific modulation of cellular enzymes.  相似文献   

20.
Preeclampsia or pregnancy-induced hypertension is a major cause of both maternal and fetal-neonatal morbidity and mortality. The deficiency of vitamin E can cause accumulation of lipid peroxidation products, which, in turn, can induce vasoconstriction. This study has examined any evidence of increased cellular lipid peroxidation and accumulation of malonydialdehyde (MDA, an end product of lipid peroxidation) in pregnancy-induced hypertension and any relationship between the elevated MDA and lower vitamin E levels with hypertension in pregnant women. EDTA-Blood was collected from pregnant women at the time of delivery. Plasma vitamin E was determined by HPLC; MDA by the thiobarbituric acid-reactivity. Subjects with diastolic blood pressure(DBP) 90 mm Hg were considered hypertensive (HT) and with <90 mm Hg normotensive (NT). Data (Mean±SE) from 49 NT and 11 HT women show that HT has significantly lower vitamin E (22±1 vs 27±1 nmole/ml, p<0.03) and elevated MDA levels (0.56±0.06 vs 0.43±0.02 nmole/ml, p<0.03) compared to NT; the ages and gestational ages of women were similar. Among all women, there was a significant positive relationship between DBP and MDA levels (r=0.27, p<0.05), and a significant negative relationship between vitamin E levels and DBP (–0.36, p<0.005), and a significant negative relationship between MDA and vitamin E levels (r=–0.27, p<0.05). Thus, HT women's plasma has significantly lower E and higher MDA levels, and DBP significantly correlates with the extent of vitamin E deficiency and increased MDA levels. This study suggests a relationship between elevated lipid peroxidation and lower vitamin E levels and hypertension in pregnancy (preeclampsia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号