首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Hypertension may impact pelvic arterial blood flow resulting in reduction of nitric oxide synthase (NOS) levels. Although doxazosin, an alpha(1)-adrenoceptor antagonist, has been shown to improve erectile dysfunction as well as benign prostatic hyperplasia (BPH) and hypertension, it is not clear whether these improvements using doxazosin are primarily due to direct actions on the prostate, urinary bladder and penis, possibly via inhibition of vascular alpha(1)-adrenoceptors, or other sites of actions. Therefore, we investigated effects of doxazosin to the spontaneously hypertensive rat (SHR) on blood flow and NOS levels in the genitourinary tract. Four groups of rats were assessed: group 1, SHRs treated with doxazosin (30 mg/kg/day) for 4 weeks; group 2, SHRs treated with nifedipine (30 mg/kg/day) for 4 weeks; group 3, untreated SHRs; and group 4, untreated Wistar-Kyoto (WKY) rats. Blood flow to the ventral prostate, dorsolateral prostate, urinary bladder and penis was determined using a fluorescent microsphere infusion technique. Expression levels of nNOS and eNOS mRNAs were quantified by real-time RT-PCR using SYBR Green I. Blood flow to the ventral prostate, dorsolateral prostate, urinary bladder and penis was significantly lower in untreated SHRs than WKY rats. Treatment with doxazosin increased blood flow to each tissue studied in SHRs. RT-PCR data indicated that untreated SHRs had lower mRNA expression levels of nNOS in the bladder and penis and eNOS in the penis than WKY rats and that administration of doxazosin to the SHR caused an increase in expression levels of these genes, i.e., up-regulation of nNOS in the bladder and penis and eNOS in the penis. However, nifedipine had no significant effects on blood flow and NOS levels in the SHR genitourinary tract. Our data demonstrate that doxazosin treatment causes differential alterations in blood flow and NOS levels in the SHR genitourinary tract. These findings may provide insight into the beneficial effects of alpha(1)-adrenoceptor antagonists, on prostate, bladder and penile function, when used to treat symptoms of BPH and elevated blood pressure.  相似文献   

3.
Autoimmune activities have been implicated in the pathogenesis of hypertension.High levels of autoantibodies against the second extracellular loop of α1-adrenoceptor(α1-AR autoantibody,α1-AA) are found in patients with hypertension,and α1-AA could exert a α1-AR agonist-like vasoconstrictive effect.However,whether the vasoconstrictive effect of α1-AA is enhanced in hypertension is unknown.Using aortic rings of spontaneously hypertensive rats(SHR) and normotensive Wistar-Kyoto(WKY) rats,we observed the vasoconstrictive responses to α1-AA with phenylephrine(α1-AR agonist) as a positive control drug.Aortic nitrotyrosine levels were also measured by ELISA and immunohistochemistry.The results showed that the aortic constrictive responses to α1-AA and phenylephrine(both 1 nmol L-1-10 μmol L-1) were greater in SHR than in WKY rats.Endothelial denudation or L-NAME(a non-selective NOS inhibitor)(100 μmol L-1) increased α1-AA- or phenylephrine-induced vasoconstrictions both in SHR and WKY.However,selective iNOS inhibitor 1400W(10 μmol L-1) enhanced the α1-AA-induced aortic constriction in WKY,but not in SHR.The aortic nitrotyrosine level was significantly higher in SHR than WKY,as shown by both ELISA and immunohistochemistry.These results indicate that the vasoconstrictive response to α1-AA is enhanced in SHR,and this altered responsiveness is due to endothelial dysfunction and decreased NO bioavailability.The study suggests an important role of α1-AR autoimmunity in the pathogenesis and management of hypertension especially in those harboring high α1-AA levels.  相似文献   

4.
Light to moderate drinking in humans lowers the risk of coronary heart disease and may lower blood pressure. We examined the effect of chronic low daily alcohol consumption on blood pressure, platelet cytosolic free calcium [Ca2+]i, tissue aldehyde conjugates and renal vascular changes in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). We also examined the effects of the same weekly amount of alcohol consumption over a one day period each week simulating weekend drinking in humans. Animals, age 7 weeks, were divided into six groups of six animals each and were treated as follows: WKY and SHR control, normal drinking water; WKY and SHR, 0.5% ethanol in drinking water; WKY and SHR, 3.5% ethanol in drinking water one day/week. After 14 weeks systolic blood pressure, platelet [Ca2+]i, liver, kidney and aortic aldehyde conjugates were significantly higher (p < 0.05) in untreated SHRs as compared to untreated WKYs. Daily 0.5% ethanol consumption in SHRs significantly (p < 0.05) attenuated these changes and also attenuated smooth muscle cell hyperplasia and narrowing of the lumen in small arteries and arterioles of the kidney. WKY rats treated with 0.5% ethanol had lower aldehyde conjugates without any significant effect on blood pressure and platelet [Ca2+]i as compared to WKY controls. Consumption of 3.5% ethanol one day/week did not affect blood pressure and associated changes in normotensive WKY rats or hypertensive SHRs as compared to their respective controls. These results suggest that chronic daily low ethanol intake lowers blood pressure in SHRs by lowering tissue aldehyde conjugates and cytosolic free calcium.  相似文献   

5.

Background

A decreased prostatic blood flow could be one of the risk factors for benign prostatic hyperplasia/benign prostatic enlargement. The spontaneously hypertensive rat (SHR) shows a chronic prostatic ischemia and hyperplastic morphological abnormalities in the ventral prostate. The effect of silodosin, a selective alpha1A-adrenoceptor antagonist, was investigated in the SHR prostate as a prostatic hyperplasia model focusing on prostatic blood flow.

Methods

Twelve-week-old male SHRs were administered perorally with silodosin (100 μg/kg/day) or vehicle once daily for 6 weeks. Wistar Kyoto (WKY) rats were used as normotensive controls and were treated with the vehicle. The effect of silodosin on blood pressure and prostatic blood flow were estimated and then the prostates were removed and weighed. The tissue levels of malondialdehyde (MDA), interleukin-6 (IL-6), chemokine (C-X-C motif) ligand 1/cytokine-induced neutrophil chemoattractant 1 (CXCL1/CINC1), tumor necrosis factor-alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), basic fibroblast growth factor (bFGF) and alpha-smooth muscle actin (α-SMA) were measured. The histological evaluation was also performed by hematoxylin and eosin staining.

Results

There was a significant increase in blood pressure, prostate weight, prostate body weight ratio (PBR), tissue levels of MDA, IL-6, CXCL1/CINC1, TNF-α, TGF-β1, bFGF and α-SMA in the SHR compared to the WKY rat. The ventral prostate in the SHR showed the morphological abnormalities compared to the WKY rat. Prostatic blood flow was decreased in the SHR. However, treatment with silodosin significantly restored the decreased prostatic blood flow in the SHR. Moreover, silodosin normalized tissue levels of MDA, IL-6, CXCL1/CINC1, TNF-α, TGF-β1, bFGF and α-SMA, and it ameliorated ventral prostatic hyperplasia in the SHR excluding blood pressure. Silodosin decreased PBR but not prostate weight in the SHR.

Conclusions

Silodosin can inhibit the progression of prostatic hyperplasia through a recovery of prostatic blood flow.  相似文献   

6.
Macula densa (MD) cells of the juxtaglomerular apparatus (JGA) synthesize type 1 nitric oxide synthase (NOS1) and type 2 cyclooxygenase (COX-2). Both nitric oxide (NO) and prostaglandins have been considered to mediate or modulate the control of renin secretion. Reactive oxygen species (ROS) produced locally by NADPH oxidase may influence NO bioavailability. We have tested the hypothesis that in hypertension elevated ROS levels may modify the expression of NOS1 and COX-2 in the JGA, thereby interacting with juxtaglomerular signaling. To this end, spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats (WKY) received the specific NADPH oxidase inhibitor, apocynin, during 3 wk. Renal functional and histochemical parameters, plasma renin activity (PRA), and as a measure of ROS activity, urinary isoprostane excretion (IP) were evaluated. Compared with WKY, IP levels in untreated SHR were 2.2-fold increased, and NOS1 immunoreactiviy (IR) of JGA 1.5-fold increased, whereas COX-2 IR was reduced to 35%, renin IR to 51%, and PRA to 7%. Apocynin treatment reduced IP levels in SHR to 52%, NOS1 IR to 69%, and renin IR to 62% of untreated SHR, whereas renin mRNA, COX-2 IR, glomerular filtration rate, PRA, and systolic blood pressure remained unchanged. WKY revealed no changes under apocynin treatment. These data show that NADPH oxidase is an important contributor to elevated levels of ROS in hypertension. Upregulation of MD NOS1 in SHR may have the potential of blunting the functional impact of ROS at the level of bioavailable NO. Downregulated COX-2 and renin levels in SHR are apparently unrelated to oxidative stress, since apocynin treatment had no effect on these parameters.  相似文献   

7.
Involvement of free radicals and nitric oxide (NO) has long been implicated to the pathogenesis of essential hypertension. Several studies using antioxidants as the radical scavenger have shown to confer protection against free radical mediated diseases. This study is designed to investigate the role of antioxidant gamma-tocotrienol on endothelial nitric oxide synthase (NOS) activity in spontaneously hypertensive rats (SHR). SHR's were divided into four groups namely untreated SHR (HC), treatment with 15 mg gamma-tocotrienol/kg diet (gammal), 30 mg gamma-tocotrienol/kg diet (gamma2) and 150 mg gamma-tocotrienol/kg diet (gamma3) and studied for three months. Wister Kyoto (WKY) rats were used as the control (C). Blood pressure was recorded every fortnightly by tail plethysmography. Animals were sacrificed and NOS activity in blood vessels was measured by [3H]arginine radioactive assay. Nitrite concentration in plasma was determined by Greis assay and lipid peroxides in the blood vessels by spectrofluorometry. This study showed that gamma-tocotrienol significantly reduced systolic blood pressure (SBP) in SHRs with a maximum reduction in group treated with gamma-tocotrienol 15 mg/kg diet (HC: 210 +/- 9 mmHg, gammal:123 +/- 19 mmHg). Blood vessels from untreated SHR showed a reduced NOS activity compare to that of WKY rats (C: 1.54 +/- 0.26 pmol/mg protein, HC: 0.87 +/- 0.23 pmol/mg protein; p<0.001). Gamma-tocotrienol improves NOS activity in all the groups with more significance in group gamma2 (p<0.001) and gamma3 (p<0.05). Plasma level of nitrite was reduced in SHR from 55 +/- 3 microM/ml in WKY to 26+/-2 muM/ml (p<0.001). Plasma nitrite level was reversed by treatment with gamma-tocotrienol. (gammal: p<0.001, gamma2: p<0.005, gamma3: p<0.001, respectively). In all the treatment groups, NOS activity showed significant negative correlation with blood pressure (gammal: r=-0.716, p<0.05; gamma2: r=-0.709, p<0.05; gamma3: r=-0.789, p<0.05). For plasma nitrite, although it shows a negative correlation with blood pressure it was significant only in gammal (r=-0.676, p<0.05) and gamma2 (r=-0.721, p<0.05). From this study we found that compared to WKY rats, SHR has lower NOS activity in blood vessels, which upon treatment with antioxidant gamma-tocotrienol increased the NO activity and concomitantly reduced the blood pressure. These findings further strengthen the hypothesis that free radicals and NO play critical role in pathogenesis of essential hypertension.  相似文献   

8.

Aims

Hypertension is associated with the impairment of renal cyclooxygenase (COX) activity, which regulates vascular tone, salt and water balance and renin release. We aimed to evaluate the functional role of COX isoforms in kidneys isolated from spontaneously hypertensive rats (SHR) after α1-adrenoceptor (α1-AR) stimulation.

Main methods

Male six-month-old SHR and normotensive Wistar-Kyoto rats (WKY) were used. The kidneys were isolated to measure perfusion pressure and COX-1- or COX-2-derived prostanoids in response to α1-AR activation.

Key findings

The basal perfusion pressure was higher in SHR kidneys compared with WKY kidneys (95 ± 11 vs. 68 ± 6 mm Hg, P < 0.05). Phenylephrine induced a greater vasopressor response in SHR kidneys (EC50 of 1.89 ± 0.58 nmol) than WKY kidneys (EC50 of 3.30 ± 0.54 nmol, P < 0.05 vs. SHR). COX-1 inhibition decreased the α1-AR-induced vasoconstrictor response in WKY but did not affect SHR response, while COX-2 inhibition diminished the response in SHR. Both basal prostacyclin (PGI2) and thromboxane A2 (TxA2) values were higher in SHR kidney perfusates (P < 0.05) and were reduced by COX-1 and COX-2 inhibitors in both strains. Furthermore, phenylephrine increased PGI2 through COX-2 in WKY and through COX-1 in SHR, but the agonist did not significantly modify TxA2 in both strains.

Significance

The data suggest that COX-1contributes to vasoconstrictor effects in WKY kidneys and that COX-2 has the same effect in SHR kidneys. The results also suggest that basal release of COX-2-derived vasoconstrictor prostanoids is involved in renal vascular hypersensitivity in SHR.  相似文献   

9.
The purpose of this study was to investigate the effect of chronic treatment with prazosin, a selective α1-adrenoceptor antagonist, on the development of hypertension in fructose-fed rats (FFR). High-fructose feeding and treatment with prazosin (1 mg/kg/day via drinking water) were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma norepinephrine (NE), uric acid, and angiotensin II (Ang II) were determined following 9 weeks of treatment. FFR exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension, as well as elevations in plasma NE and Ang II levels. Treatment with prazosin prevented the rise in blood pressure without affecting insulin levels, insulin sensitivity, uric acid, or Ang II levels, while normalizing plasma NE levels in FFR. These data suggest that over-activation of the sympathetic nervous system, specifically α1-adrenoceptors, contributes to the development of fructose-induced hypertension, however, this over-activation does not appear to an initial, precipitating event in FFR.  相似文献   

10.
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attentiondeficit disorder (ADHD). The behavioural problems have been suggested to be secondary to altered reinforcement mechanisms in which nucleus accumbens dopaminergic activity plays an important role. Interaction between the noradrenergic and dopaminergic system in the nucleus accumbens has been implicated in the locomotor hyperactivity and impaire discriminative performance of SHR. The present study therefore investigated whether there was any change in the 2-adrenoceptor mediated inhibition of dopamine release from nucleus accumbens slices of SHR in comparison with their normotensive Wistar-Kyoto (WKY) controls. The electrically stimulated release of [3H]dopamine (DA) from nucleus accumbens slices was decreased to a similar extent by UK14,304, an 2-adrenoceptor agonist, in SHR and WKY. Basal norepinephrine (NE) levels were increased in locus coeruleus (LC) and A2 noradrenergic nuclei, but not in the A1 nucleus of SHR, while basal serotonin (5-HT) levels were increased in all these pons-medulla nuclei. These results suggest that a primarily dysfunctional LC and A2 nucleus does not have a secondary effect on dopaminergic transmission in the nucleus accumbens via 2-adrenoceptor mediated inhibition of DA release. Basal monoamine levels in several brain areas of SHR were significantly different from that of WKY. DA, and 5-HT turnover were decreased in SHR versus WKY suggesting hypofunctional dopaminergic and serotonergic systems in some brain areas of SHR.  相似文献   

11.
The pharmacology of prazosin, a novel antihypertensive agent   总被引:8,自引:0,他引:8  
I Cavero  A G Roach 《Life sciences》1980,27(17):1525-1540
During the past few years a large amount of pharmacological and physiological evidence has been obtained in favor of two distinct types of α-adrenoceptors. As a working hypothesis, it is feasible to assume that both α1- and α2-adrenoceptors are abundant on the vascular effector site, whereas the α-adrenoceptors (the blockade of which increases norepinephrine release) predominate at the level of peripheral sympathetic nerve endings. Prazosin is a novel, selective antagonist of α1-adrenoceptors and can be considered an important advancement both pharmacologically and therapeutically since this compound in contrast to classical α-adrenoceptor blocking agents, is effective for the treatment of high blood pressure. Prazosin lacks direct myorelaxant properties and, unlike many vasodilators, in doses lowering blood pressure it does not produce undesirable increases in heart rate and plasma renin activity. Prazosin has proved to be a very useful pharmacological tool since it has permitted us the furtherance of our knowledge with respect to the subclassification of receptors mediating the effects produced by α-adrenoceptor agonists, particularly clonidine. Pharmacokinetic and metabolic studies on prazosin given orally indicate that in animals and in man this compound has a low bioavailability, short half life and undergoes extensive biotransformation. The most common clinical use of prazosin is as an antihypertensive agent and is often given in association with established blood pressure lowering drugs. Recently, it was shown to be useful in the treatment of congestive heart failure, but for this application tolerance has been described. Generally, patients treated chronically with prazosin suffer only minor unwanted effects. This is in contrast to past experience with traditional α-adrenoceptor antagonist. The most serious side effect of prazosin is known as the “first dose phenomenon” which can sometimes lead to syncope. However, it can be avoided if prazosin therapy is initiated with minimally effective doses and individually tailored to obtain the desired antihypertensive effect. Presently, the interesting clinical profile of prazosin is attributed to its novel property of being a selective antagonist of postsynaptic α1-adrenoceptors. Howeverm this is probably an over simplification since some therapeutic observations are not entirely consistent with results which would have been expected for a selective α1-adrenoceptor. For example, prazosin, like the classical antagonists, would be expected to produce sexual dysfunction but, in fact, does not to any significant degree. Future studies with new chemical structures sharing the pharmacological profile of prazosin will clarify the real role of the selectivity towards α1-adrenoceptors in the therapeutic success of prazosin.  相似文献   

12.
Both NADPH oxidase-derived reactive oxygen species (ROS) and asymmetric dimethylarginine (ADMA) are increased in hypertension. Apocynin, an NADPH oxidase inhibitor, could inhibit ROS, thus we tested whether apocynin can block NADPH oxidase and prevent increases of ADMA and blood pressure (BP) in spontaneously hypertensive rats (SHRs). SHRs and Wistar Kyoto (WKY) rats, aged 4 weeks, were assigned to four groups: untreated SHRs and WKY rats, SHRs and WKY rats that received 2.5 mM apocynin for 8 weeks. BP was significantly higher in SHRs compared to WKY rats, which was attenuated by apocynin. Apocynin prevented p47phox translocation in SHR kidneys, but not the increase of superoxide and H(2)O(2). Additionally, apocynin did not protect SHRs against increased ADMA. Apocynin blocks NADPH oxidase to attenuate hypertension, but has little effect on the ADMA/nitric oxide (NO) pathway in young SHRs. The reduction of ROS and the preservation of NO simultaneously might be a better approach to restoring ROS-NO balance to prevent hypertension.  相似文献   

13.
14.
15.
In an earlier study, we found increased NO production and NO synthase (NOS) expression in renal and vascular tissues of prehypertensive and adult spontaneously hypertensive rats (SHR). This study was designed to determine the effects of aging and AT-1 receptor blockade (losartan 30 mg/kg/day beginning at 8 weeks of age) on NO system in this model. Compared to the Wistar Kyoto (WKY) control rats, untreated SHR showed severe hypertension, elevated urinary NO metabolite (NO(chi)) excretion, marked upregulations of renal and vascular eNOS and iNOS proteins, normal renal function and heart weight at 9 weeks of age. Hypertension control with either AT-1 receptor or calcium channel blockade (felodipine 5 mg/kg/day) mitigated upregulation of NOS isoforms in the young SHR. With advanced age (63 weeks), the untreated SHR showed increased proteinuria, renal insufficiency, cardiomegaly, reduced urinary NO(chi) excretion and depressed renal and vascular NOS protein expressions as compared to the corresponding WKY group. AT-1 receptor blockade prevented proteinuria, renal insufficiency, cardiomegaly, and renal and vascular NOS deficiency. Thus, in young SHR, hypertension results in compensatory upregulation of renal and vascular NOS, which can be attenuated by vigorous antihypertensive therapy. With advanced age, untreated SHR exhibit cardiomegaly, renal dysfunction and marked reductions of eNOS and iNOS compared with the aged WKY rats. Hypertension control with AT-1 receptor blockade initiated early in the course of the disease prevents target organ damage and preserves renal and vascular NOS.  相似文献   

16.

Background

Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension.

Methodology/Principal Findings

Four-week-old male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were fed 15% SO, RPO or PO supplemented diet for 15 weeks. After 15 weeks of treatment, the systolic blood pressure (SBP) of SHR treated with SO, RPO and PO were 158.4±5.0 mmHg (p<0.001), 178.9±2.7 mmHg (p<0.001) and 167.7±2.1 mmHg (p<0.001), respectively, compared with SHR controls (220.9±1.5 mmHg). Bradycardia was observed with SO and PO. In contrast, the SBP and heart rate of treated WKY rats were not different from those of WKY controls. The SO and PO significantly reduced the increased heart size and thoracic aortic media thickness observed in untreated SHR but RPO reduced only the latter. No such differences, however, were observed between the treated and untreated WKY rats. Oil Red O enface staining of thoracic-abdominal aorta did not show any lipid deposition in all treated rats. The SO and RPO significantly raised serum alkaline phosphatase levels in the SHR while body weight and renal biochemical indices were unaltered in both strains. Serum lipid profiles of treated SHR and WKY rats were unchanged, with the exception of a significant reduction in LDL-C level and total cholesterol/HDL ratio (atherogenic index) in SO and RPO treated SHR compared with untreated SHR.

Conclusion

The SO, RPO and PO attenuate the rise in blood pressure in SHR, accompanied by bradycardia and heart size reduction with SO and PO, and aortic media thickness reduction with SO, RPO and PO. The SO and RPO are antiatherogenic in nature by improving blood lipid profiles in SHR.  相似文献   

17.
Intact hindquarter vascular responses to abdominal aortic injections of subpressor doses of norepinephrine (0.01, 0.02, 0.03 μg) or tyramine (5, 10, 15 μg) were examined in young (2 12–3 months) spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) normotensives to ascertain whether altered vascular response to catecholamines in SHR could be detected in the presence of relatively constant systemic arterial perfusion pressure. Increases in vascular resistance (Δ mmHg. min/ml) and total decreases in blood flow volume (Δ ml) were determined by using electromagnetic flowmetry and blood flow integration techniques. Under a resting condition the abdominal aortic flow rate (ml/min) was similar between the SHR (8.7 ± 0.5) and WKY control (9.1 ± 0.5), whereas hindquarter vascular resistance was greater (73.8%) in SHR than in WKY normotensives (P < 0.05). The increase in vascular resistance in response to a low dose of norepinephrine (0.1 μg) was greater (85%) in SHR than in WKY rats (P < 0.05) and at higher doses of norepinephrine (0.02, 0.03 μg) there was a tendency of greater increase in resistance (20–30%) in SHR (0.05 < P < 0.1). Tyramine at all doses tested produced greater increases (50–66%) in resistance in SHR compared to WKY normotensives (P < 0.05). On the other hand, the decreases in the integrated total blood flow volume passing to the hindquarters after norepinephrine or tyramine administration at all doses were less (27–46%) in SHR than in WKY control (P < 0.05). The data demonstrate increased catecholamine vasoconstrictor responses in the intact hindquarters of SHR with attenuated blood flow volume decreases due to the higher resting vascular resistance, supporting the contention that the elevated vascular resistance in SHR may be attributed to vasoconstrictor hyperresponsiveness of catecholamines.  相似文献   

18.
Sattin A  Pekary AE  Blood J 《Peptides》2011,32(8):1666-1676
Hyperresponsiveness to norepinephrine contributes to post-traumatic stress disorder (PTSD). Prazosin, a brain-active blocker of α1-adrenoceptors, originally used for the treatment of hypertension, has been reported to alleviate trauma nightmares, sleep disturbance and improve global clinical status in war veterans with PTSD. Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) may play a role in the pathophysiology and treatment of neuropsychiatric disorders such as major depression, and PTSD (an anxiety disorder). To investigate whether TRH or TRH-like peptides (pGlu-X-Pro-NH2, where “X” can be any amino acid residue) participate in the therapeutic effects of prazosin, male rats were injected with prazosin and these peptides then measured in brain and endocrine tissues. Prazosin stimulated TRH and TRH-like peptide release in those tissues with high α1-adrenoceptor levels suggesting that these peptides may play a role in the therapeutic effects of prazosin.  相似文献   

19.
In spontaneously hypertensive rats (SHRs) excess endogenous aldehydes bind sulfhydryl groups of membrane proteins, altering membrane Ca2+ channels and increasing cytosolic free calcium and blood pressure. The thiol compound, N-acetyl cysteine, normalizes elevated blood pressure in SHRs by binding excess endogenous aldehydes. Vitamin C can increase tissue cysteine and glutathione levels. The aim of the present study was to investigate whether a dietary supplementation of vitamin C can lower tissue aldehydes and blood pressure and normalize associated biochemical and histopathological changes in SHRs. Starting at 12 weeks of age, animals were divided into 3 groups of 6 animals each. Animals in the WKY-control group and SHR-control group were given a normal diet and the SHR-vitamin C group a diet supplemented with vitamin C (1000 mg/kg feed) for the next 9 weeks. After nine weeks, systolic blood pressure, platelet [Ca2+]i, plasma insulin and liver, kidney and aortic aldehyde conjugates were significantly higher in SHR controls as compared to WKY controls and the SHR-vitamin C group. SHR-controls also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary vitamin C supplementation in SHRs lowered the systolic blood pressure, tissue aldehyde conjugates and attenuated adverse renal vascular changes.  相似文献   

20.
Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar‐Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de‐endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin β1‐ and bone morphogenetic protein 1 (BMP1)‐mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC‐induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin β1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号