首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Oxidative stress may be an important factor in the development of diabetic complications. Advanced glycation end-products have drown attention as potential sources of oxidative stress in diabetes. We investigated the protective effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on oxidative DNA damage from reactive oxygen species or advanced glycation end-products in vitro, as well as effects of main fluvastatin metabolites and other inhibitors of the same enzyme, pravastatin and simvastatin. Protective effects were assessed in terms of the DNA breakage rate in a single-stranded phage DNA system in vitro. DNA was exposed to either reactive oxygen species or advanced glycation end-products. Fluvastatin and its metabolites showed a strong protective effect comparable to those seen with thiourea and mannitol, though pravastatin and simvastatin did not exert clear protective effects. Furthermore, fluvastatin reduced the mutagenesis by reactive oxygen species or advanced glycation end-products in Salmonella typhimurium test strains. Both pravastatin and simvastatin still lacked protective activity. Fluvastatin and its metabolites protect against oxidative DNA damage and may reduce risk of consequent diabetic complications.  相似文献   

2.
We investigated the effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on reactive oxygen species (ROS) and on oxidative DNA damage in vitro, as well as the effects of the main fluvastatin metabolites (M2, M3, and M4) and other inhibitors of the same enzyme, pravastatin and simvastatin. The hydroxyl radical and the superoxide anion scavenging activities of fluvastatin and its metabolites were evaluated using an electron spin resonance spectrometer. Fluvastatin and its metabolites showed superoxide anion scavenging activity in the hypoxanthine-xanthine oxidase system and a strong scavenging effect on the hydroxyl radical produced from Fenton's reaction. Protective effects of fluvastatin on ROS-induced DNA damage of CHL/IU cells were assessed using the single-cell gel electrophoresis assay. CHL/IU cells were exposed to either hydrogen peroxide or t-butylhydroperoxide. Fluvastatin and its metabolites showed protective effects on DNA damage as potent as the reference antioxidants, ascorbic acid, trolox, and probucol, though pravastatin and simvastatin did not exert clear protective effects. These observations suggest that fluvastatin and its metabolites may have radical scavenging activity and the potential to protect cells against oxidative DNA damage. Furthermore, ROS are thought to play a major role in the etiology of a wide variety of diseases such as cellular aging, inflammation, diabetes, and cancer development, so fluvastatin might reduce these risks.  相似文献   

3.
We investigated the effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on reactive oxygen species (ROS) and on oxidative DNA damage in vitro, as well as the effects of the main fluvastatin metabolites (M2, M3, and M4) and other inhibitors of the same enzyme, pravastatin and simvastatin. The hydroxyl radical and the superoxide anion scavenging activities of fluvastatin and its metabolites were evaluated using an electron spin resonance spectrometer. Fluvastatin and its metabolites showed superoxide anion scavenging activity in the hypoxanthine-xanthine oxidase system and a strong scavenging effect on the hydroxyl radical produced from Fenton's reaction. Protective effects of fluvastatin on ROS-induced DNA damage of CHL/IU cells were assessed using the single-cell gel electrophoresis assay. CHL/IU cells were exposed to either hydrogen peroxide or t-butylhydroperoxide. Fluvastatin and its metabolites showed protective effects on DNA damage as potent as the reference antioxidants, ascorbic acid, trolox, and probucol, though pravastatin and simvastatin did not exert clear protective effects. These observations suggest that fluvastatin and its metabolites may have radical scavenging activity and the potential to protect cells against oxidative DNA damage. Furthermore, ROS are thought to play a major role in the etiology of a wide variety of diseases such as cellular aging, inflammation, diabetes, and cancer development, so fluvastatin might reduce these risks.  相似文献   

4.
Statins are known clinically by their cholesterol reduction properties through the inhibition of HMG-CoA reductase. There is mounting evidence suggesting a protective role of statins in certain types of cancer, cardiac, and vascular disease through a mechanism that extends beyond their lipid lowering ability. The root mechanism of damage likely involves the inflammatory cascade, specifically compounds known as reactive oxygen species such as the hydroxyl radical. However, direct evidence for the hydroxyl-scavenging capacity of pravastatin and fluvastatin, two forms of statins being widely used to lower LDL cholesterol, is still lacking in literature. In this study, electron paramagnetic resonance spectroscopy in combination with 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-spin-trapping technique was utilized to determine the abilities of pravastatin and fluvastatin in scavenging hydroxyl radical generated from Fe(II) with H(2)O(2) system. In addition, we examined the effects of pravastatin and fluvastatin on oxidative-induced φX-174 RF I plasmid DNA damage. We have demonstrated here for the first time that pravastatin and fluvastatin at physiologically relevant concentrations significantly decreased formation of DMPO-OH adduct indicating that both compounds could directly scavenge hydroxyl radicals. However, pravastatin and fluvastatin were not able to directly protect against oxidative DNA plasmid damage. The hydroxyl radical sequestering ability of pravastatin and fluvastatin reported in this study may contribute to their beneficial use in certain types of cancer and in cardiovascular disease.  相似文献   

5.
Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has recently been reported to have the antioxidative activity in vitro. However, it is still unclear whether chronic treatment with this drug actually leads to amelioration of the redox status in the body. In this study, we investigated the antioxidative effect of fluvastatin in vivo, using a vitamin E-deficient hamster model, an in vivo model of enhanced oxidative stress. After pre-treatment with a vitamin E-deficient diet for 2 months, fluvastatin, pravastatin or probucol was added to the diet for 1 month. Vitamin E deficiency caused a significant increase in the levels of plasma oxidative stress markers such as 8-iso-prostaglandin F2α (8-iso-PGF2α) and hydroperoxides. Furthermore, there was a significant increase in the oxidizability of plasma lipids in the vitamin E-deficient animals, indicating that the oxidative stress was increased in the circulation. Fluvastatin markedly depressed the above oxidative stress markers in plasma, and significantly decreased the oxidizability of plasma lipids without affecting their levels. Probucol, a reference antioxidant, also showed a similar effect while pravastatin, another HMG-CoA reductase inhibitor, showed only a weak improvement. We suggest that the treatment with fluvastatin leads to a reduction of oxidative stress in vivo, which is mainly derived from its antioxidative property rather than its lipid-lowering activity.  相似文献   

6.
Excessive formation of advanced glycation end-products (AGEs) presents the most important mechanism of metabolic memory that underlies the pathophysiology of chronic diabetic complications. Independent of the level of hyperglycaemia, AGEs mediate intracellular glycation of the mitochondrial respiratory chain proteins leading to excessive production of reactive oxygen species (ROS) and amplification of their formation. Additionally, AGEs trigger intracellular damage via activation of the receptor for AGEs (RAGE) signalling axis that leads to elevation of cytosolic ROS, nuclear factor kappaB (NF-κB) activation, increased expression of adhesion molecules and cytokines, induction of oxidative and endoplasmic reticulum stress. Recent studies have identified novel microRNAs (miRNAs) involved in the regulation of AGE/RAGE signalling in the context of diabetic micro- and macrovascular complications. The aim of this review is to discuss the emerging role of miRNAs on AGE/RAGE pathway and the potential use of several miRNAs as novel therapeutic targets.  相似文献   

7.
The aim of this study was to investigate the effects of rooibos tea as a natural source of a wide scale of antioxidants on the prevention and treatment of oxidative stress in streptozotocin-induced diabetic rats. Expected significant changes of biochemical parameters characteristic for experimental diabetic state were found in plasma and tissues eight weeks after single dose streptozotocin application. Administration of aqueous and alkaline extracts of rooibos tea (or N-acetyl-L-cysteine for comparison) to diabetic rats did not affect markers of the diabetic status (glucose, glycated hemoglobin and fructosamine). Besides the parameters characterizing hepatotoxic effect of streptozotocin, rooibos tea significantly lowered advanced glycation end-products (AGEs) and malondialdehyde (MDA) in the plasma and in different tissues of diabetic rats, particularly MDA concentration in the lens. From these results we can conclude that antioxidant compounds in rooibos tea partially prevent oxidative stress and they are effective in both hydrophobic and hydrophilic biological systems. Therefore, rooibos tea as a commonly used beverage can be recommended as an excellent adjuvant support for the prevention and therapy of diabetic vascular complications, particularly for protecting ocular membrane systems against their peroxidation by reactive oxygen species.  相似文献   

8.
目的:本实验探讨缬沙坦对糖基化终产物诱导的人肾小球系膜细胞氧化应激水平及糖基化终产物受体(RAGE)表达的影响。方法:体外常规培养人肾小球系膜细胞,运用糖基化修饰的牛血清白蛋白(AGE-BSA)和缬沙坦进行干预,流式细胞术检测细胞内活性氧(ROS),RT-PCR法检测NADPH氧化酶的亚基p47^phox的mRNA表达,RT-PCR和细胞免疫化学法检测RAGE的表达量。结果:缬沙坦干预组人肾小球系膜细胞的ROS产生量、NADPH氧化酶的亚基p47^phox mRNA表达量、RAGE表达量均低于AGE-BSA组(P〈0.05),且缬沙坦的抑制作用呈浓度和时间依赖性。结论:缬沙坦可能通过降低氧化应激水平来抑制RAGE的表达。  相似文献   

9.
The accumulation of somatic mutations in mitochondrial DNA (mtDNA) induced by reactive oxygen species (ROS) is regarded as a major contributor to aging and age-related degenerative diseases. ROS have also been shown to facilitate the formation of certain advanced glycation end-products (AGEs) in proteins and DNA and N(2)-carboxyethyl-2'-deoxyguanosine (CEdG) has been identified as a major DNA-bound AGE. Therefore, the influence of mitochondrial ROS on the glycation of mtDNA was investigated in primary embryonic fibroblasts derived from mutant mice (Sod2(-/+)) deficient in the mitochondrial antioxidant enzyme manganese superoxide dismutase. In Sod2(-/+) fibroblasts vs wild-type fibroblasts, the CEdG content of mtDNA was increased from 1.90 ± 1.39 to 17.14 ± 6.60 pg/μg DNA (p<0.001). On the other hand, the CEdG content of nuclear DNA did not differ between Sod2(+/+) and Sod2(-/+) cells. Similarly, cytosolic proteins did not show any difference in advanced glycation end-products or protein carbonyl contents between Sod2(+/+) and Sod2(-/+). Taken together, the data suggest that mitochondrial oxidative stress specifically promotes glycation of mtDNA and does not affect nuclear DNA or cytosolic proteins. Because DNA glycation can change DNA integrity and gene functions, glycation of mtDNA may play an important role in the decline of mitochondrial functions.  相似文献   

10.
Nonenzymatic glycation, i.e. binding of monosaccharides to amino groups of proteins, gives rise to complex components called "advanced glycation end-products" (AGEs), which alter protein structure and functions, and participate in diabetic long-term complications. Glycation and oxidative stress are closely linked, and are often referred to as "glycoxidation" processes. Experimental data support these interactions. a) All glycation steps generate oxygen free radicals, some of these steps being common with these of lipid peroxidation. b) AGEs bind to membrane receptors such as RAGE, and induce an oxidative stress and a pro-inflammatory status. c) Glycated proteins modulate cellular oxidative functions: glycated collagens induce an inappropriate oxidative response in PMNs. d) Products of lipid peroxidation (MDA) bind to proteins and amplify glycoxidation-induced damages. Glycoxydation intensity increases in diabetes mellitus, ageing, renal failure and other pathological states with oxidative stress. Therapies aiming at limiting glycoxidation take into account its oxidative part.  相似文献   

11.
Antioxidant and anti-AGE therapeutics: evaluation and perspectives   总被引:5,自引:0,他引:5  
Diabetic patients exhibit an oxidative stress status, that is an imbalance between reactive oxygen species and antioxidant defences, in favour of the first ones. This oxidative stress, together with formation of advanced glycation endproducts (AGEs), is involved in diabetic complications. It could thus be of great interest to propose antioxidant and/or anti-AGE therapeutics as complementary treatment in these patients. Antioxidants can be classical molecules such as vitamin E, lipoic acid or N-acetylcysteine. Thus, vitamin E supplementation can improve insulin efficiency and glycemic equilibrium, as shown by the decrease of glycaemia, glycated haemoglobin and fructosamine values. In addition, this kind of supplementation lowers plasma lipid peroxidation and oxidizability of low density lipoproteins, which is involved in the atherogenesis process. Moreover, it allows to fight against complications such as retinopathy. A second category is represented by molecules able to fight against the effects of glycation end-products (AGEs). They can act: either by preventing cellular action of AGEs; this is obtained with soluble receptors of advanced glycation endproducts (sRAGE); or by inhibiting AGE formation (scavenging of reactive carbonyl intermediates). Nucleophilic compounds such as pyridoxamine, tenilsetam, 2,3-diaminophenazone, OPB-9195 or aminoguanidine can act in this way. Aminoguanidine is able to limit the development of the main diabetes-associated complications in animals. A double-blind clinical assay has been conducted in type 2 diabetic patients in the United States and the Canada, in order to determine if aminoguanidine is able to slow down the progression of diabetes-induced nephropathy. We will discuss about another guanidic molecule, i.e. metformin, which is also able to scavenge AGEs, in the last part of this review. A third category of molecules is constituted by oral antidiabetic molecules exhibiting antioxidant properties. They are thiazolidinediones (troglitazone) and sulfonylureas (gliclazide). Troglitazone and gliclazide can thus decrease LDL oxidizability and monocyte adhesion to endothelial cells, which is an early step in the atherogenesis process and which is stimulated by oxidised LDLs. Finally, a prospective way is devoted to oral antidiabetic drugs exhibiting both antioxidant and anti-AGE properties. A very used antidiabetic drug of interest is metformin (dimethylbiguanide), since it can prevent diabetes complications not only by lowering glycaemia, but also by inhibiting AGE formation and by stimulating antioxidant defences. The latter therapeutic approach constitutes a future way in the diabetes area, in order both to obtain a better glycemic control and a least development of diabetic complications.  相似文献   

12.
Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has recently been reported to have the antioxidative activity in vitro. However, it is still unclear whether chronic treatment with this drug actually leads to amelioration of the redox status in the body. In this study, we investigated the antioxidative effect of fluvastatin in vivo, using a vitamin E-deficient hamster model, an in vivo model of enhanced oxidative stress. After pre-treatment with a vitamin E-deficient diet for 2 months, fluvastatin, pravastatin or probucol was added to the diet for 1 month. Vitamin E deficiency caused a significant increase in the levels of plasma oxidative stress markers such as 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) and hydroperoxides. Furthermore, there was a significant increase in the oxidizability of plasma lipids in the vitamin E-deficient animals, indicating that the oxidative stress was increased in the circulation. Fluvastatin markedly depressed the above oxidative stress markers in plasma, and significantly decreased the oxidizability of plasma lipids without affecting their levels. Probucol, a reference antioxidant, also showed a similar effect while pravastatin, another HMG-CoA reductase inhibitor, showed only a weak improvement. We suggest that the treatment with fluvastatin leads to a reduction of oxidative stress in vivo, which is mainly derived from its antioxidative property rather than its lipid-lowering activity.  相似文献   

13.
Non-enzymatic glycation is implicated in the development of various diseases such as Alzheimer's and diabetes mellitus. However, it is also observed during the physiologic process of aging. There is considerable interest in the contribution of oxidative stress to diabetes mellitus. An increase in the generation of reactive oxygen species can occur by non-enzymatic glycation and glucose autoxidation. Both of these processes lead to the formation of AGEs (Advanced glycation end-products) that contribute to the irreversible modification of enzymes, proteins, lipids and DNA. In this study, the effect of chronic hyperglycemia on the antioxidant system of diabetic rats was evaluated. The working hypothesis is that the loss of glucose homeostasis reduces the capacity to respond to oxidative damage. The enzymatic activities of CAT (catalase), GPx (gluthatione peroxidase), GR (gluthatione reductase) and GSH (reduced gluthatione) were increased in the blood of healthy rats subjected to endurance training, whereas, in diabetic rats the activities of CAT, GPx and GR were unaltered by similar training. SOD showed low activity in endurance-trained rats. The administration of aminoguanidine (an inhibitor of glycation reactions) in the drinking water increased the activities of CAT, GPx and GR, suggesting that glycation may be responsible for the partial inactivation of these enzymes. These results indicate that the association of hyperglycemia with strenuous physical exercise may induce cellular damage by impairing the antioxidant defense system.  相似文献   

14.
TAGE (toxic AGEs) theory in diabetic complications   总被引:6,自引:0,他引:6  
Diabetic complication is a leading cause of acquired blindness, end-stage renal failure, a variety of neuropathies and accelerated atherosclerosis. Chronic hyperglycemia is initially involved in the pathogenesis of diabetic micro- and macro-vascular complications via various metabolic derangements. High glucose increased production of various types of advanced glycation end-products (AGEs). Recently, we found that glyceraldehyde-derived AGEs (AGE-2) play an important role in the pathogenesis of angiopathy in diabetic patients. There is considerable interest in receptor for AGEs (RAGE) found on many cell types, particularly those affected in diabetes. Recent studies suggest that interaction of AGE-2 (predominantly structure of toxic AGEs; TAGE) with RAGE alters intracellular signaling, gene expression, release of pro-inflamatory molecules and production of reactive oxygen species (ROS) that contribute towards the pathology of diabetic complications. We propose three pathways for the in vivo formation of AGE-2 precursor, glyceraldehyde, such as i) glycolytic pathway, ii) polyol pathway, and iii) fructose metabolic pathway. Glyceraldehyde can be transported or can leak passively across the plasma membrane. It can react non-enzymatically with proteins to lead to accelerated formation of TAGE at both intracellularly and extracellularly. In this review, we discuss the molecular mechanisms of diabetic complications, especially focusing on toxic AGEs (TAGE) and their receptor (RAGE) system.  相似文献   

15.
The prevalence of diabetes mellitus is increasing all over the world and it is apparent that treatment of diabetic complications has the same importance as primary diabetes treatment and glycemic control. Diabetic complications occur as a result of prolonged hyperglycemia and its consequences, such as advanced glycation end products and reactive oxygen species. Impairment of lipid profile is also contributed to worsening diabetic complications. Therefore, it seems that the application of lipid-lowering agents may have positive effects on reversing diabetic complications besides glycemic control. Statins, a group of lipid-lowering compounds, have been shown to exert antioxidant, immunomodulatory, anti-inflammatory, and antiproliferative properties beyond their lipid-lowering effects. Furthermore, they have been reported to improve diabetic complications with different pathways. In this review, we will discuss the clinical importance, molecular biology of the most important microvascular/macrovascular diabetic complications, possible application of statins and their mechanism of action in retarding these complications.  相似文献   

16.
Beisswenger PJ 《Amino acids》2012,42(4):1171-1183
Propensity to diabetic nephropathy (DN), retinopathy (DR), and cardiovascular disease (CVD) varies between individuals. Current biomarkers such as indicators of glycemia (HbA1c), retinal examinations, and albuminuria, cannot detect early tissue damage. HbAIc also doesn’t reflect most glycative and oxidative chemical pathways that cause complications, and studies of new biomarkers to measure their end-products are needed. This review proposes the study of advanced glycation end products (AGEs) and oxidation end-products (OPs) in long-term diabetes outcome studies. AGEs integrate the activity of glycation pathways that form dicarbonyls, while OPs reflect superoxides, hydroxyl radicals, and peroxides. We discuss using these biomarkers to predict risk of development and progression of DN, DR, and CVD, and to determine if they confer risk independently of the level of HbA1c. We also discuss methods and guidelines to document sample quality in such studies. These studies have the potential to validate unique biomarkers during the early stages of diabetes in those who are at high risk of diabetic complications. Information on basic mechanisms responsible for complications could also stimulate development of therapeutic approaches to delay or arrest them. The ultimate goal is to predict those requiring aggressive therapies during the earliest stages, when prevention or reversal of complications is still possible.  相似文献   

17.
Type 2 diabetes (T2D) is associated with increased oxidative stress as indicated by elevated levels of lipid peroxidation and protein oxidation products. Since reactive oxygen species (ROS) can cause damage to biological macromolecules including DNA, this study investigated oxidative damage to DNA using the alkaline (pH > 13) comet assay in peripheral whole blood leukocytes sampled from 15 dyslipidemic T2D patients treated with simvastatin (20 mg/day), 15 dyslipidemic T2D patients not treated with simvastatin, 20 non‐dyslipidemic T2D patients, and 20 healthy individuals (controls). Our results showed a greater DNA migration in terms of damage index (DI) (p < 0.01) in the dyslipidemic T2D patients not treated with statin (DI = 67.70 ± 10.89) when compared to the dyslipidemic T2D patients under statin treatment (DI = 47.56 ± 7.02), non‐dyslipidemic T2D patients (DI = 52.25 ± 9.14), and controls (DI = 13.20 ± 6.40). Plasma malondialdehyde (MDA) and C‐reactive protein (CRP) levels were also increased and total antioxidant reactivity (TAR) and paraoxonase activity (PON1) decreased in non‐dyslipidemic T2D patients and dyslipidemic T2D non‐treated with simvastatin. We also found that DI was inversely correlated with TAR (r = ?0.61, p < 0.05) and PON1 (r = ?0.67, p < 0.01). In addition, there was a significant positive correlation between DI and CRP (r = 0.80, p < 0.01). Our results therefore indicate that simvastatin treatment plays a protective role on oxidative damage to DNA in dyslipidemic T2D patients probably reflecting a general decrease in oxidative stress in these patients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.

Background  

The tissue accumulation of protein-bound advanced glycation endproducts (AGE) may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS) and nitric oxide synthase (NOS) expression on these AGE-collagen mediated effects.  相似文献   

19.
Methylglyoxal, a reactive dicarbonyl compound, is mainly formed from glycolysis. Methylglyoxal can lead to the dysfunction of mitochondria, the depletion of cellular anti-oxidation enzymes and the formation of advanced glycation ends. Previous studies showed that the accumulation of methylglyoxal and advanced glycation ends can impair the oocyte maturation and reduce the oocyte quality in aged and diabetic females. In this study, we showed that resveratrol, a kind of phytoalexin found in the skin of grapes, red wine and other botanical extracts, can alleviate the adverse effects caused by methylglyoxal, such as inhibition of oocyte maturation and disruption of spindle assembly. Besides, methylglyoxal-treated oocytes displayed more DNA double strands breaks and this can also be decreased by treatment of resveratrol. Further investigation of these processes revealed that methylglyoxal may affect the oocyte quality by resulting in excessive reactive oxygen species production, aberrant mitochondrial distribution and high level lipid peroxidation, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can protect the oocytes from methylglyoxal-induced cytotoxicity and this was mainly through the correction of the abnormity of cellular reactive oxygen species metabolism.  相似文献   

20.
Advanced glycation end products (AGEs)-induced vasculopathy, including oxidative stress, inflammation and apoptosis responses, contributes to the high morbidity and mortality of coronary artery diseases in diabetic patients. The present study was conducted to evaluate the protective activity of liquiritin (Liq) on AGEs-induced endothelial dysfunction and explore its underlying mechanisms. After pretreatment with Liq, a significant reduction in AGEs-induced apoptosis, as well as reactive oxygen species generation and malondialdehyde level in human umbilical vein endothelial cells (HUVECs) were observed via acridine orange/ethidium bromide fluorescence staining test. Notably, Liq also significantly increased AGEs-reduced superoxide dismutase activity. Furthermore, the pretreatment with receptor for advanced glycation end products (RAGE)-antibody or Liq remarkably down-regulated TGF-beta1 and RAGE protein expressions and significantly blocked NF-κB activation which were proved by immunocytochemistry or immunofluorescence assays. These results indicated that Liq held potential for the protection on AGEs-induced endothelial dysfunction via RAGE/NF-κB pathway in HUVECs and might be a promising agent for the treatment of vasculopathy in diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号