首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究表皮生长因子(Epidermal Growth Factor,EGF)及受体(Epidermal Growth Factor Receptor,EGFR)及在甲状腺肿瘤中的表达。方法:应用免疫组织化学法检测91例甲状腺病变组织中EGFR和EGF的表达情况。结果:结节性甲状腺肿、甲状腺腺瘤、分化型甲状腺癌标本中EGFR表达的阳性率分别为15%、25%、68.62%,EGF表达的阳性率分别为10%、15%、68.62%,其中EGFR、EGF在分化型甲状腺癌与其余两组间差异均有统计学意义(P<0.05)。EGFR和EGF在甲状腺乳头状癌中的表达与性别、年龄、肿瘤大小、淋巴结转移、临床分期等临床因素无明显相关。结论:EGF和EGFR的表达可作为鉴别甲状腺肿瘤良恶性的一个指标。  相似文献   

2.
3.
Accumulating evidence suggests that growth differentiation factor 15 (GDF-15) is associated with the severity and prognosis of various cardiovascular diseases. However, the effect of GDF-15 on the regulation of cardiac remodeling is still poorly understood. In this present study, we demonstrate that GDF-15 blocks norepinephrine (NE)-induced myocardial hypertrophy through a novel pathway involving inhibition of EGFR transactivation. Both in vivo and in vitro assay indicate that NE was able to stimulate the synthesis of GDF-15. The up-regulation of GDF-15 feedback inhibits NE-induced myocardial hypertrophy, including quantitation of [3H]leucine incorporation, protein/DNA ratio, cell surface area, and ANP mRNA level. Further research shows that GDF-15 could inhibit the phosphorylation of EGF receptor and downstream kinases (AKT and ERK1/2) induced by NE. Clinical research also shows that serum GDF-15 levels in hypertensive patients were significant higher than in healthy volunteers and were positively correlated with the thickness of the posterior wall of the left ventricle, interventricular septum, and left ventricular mass, as well as the serum level of norepinephrine. In conclusion, NE induces myocardial hypertrophy and up-regulates GDF-15, and this up-regulation of GDF-15 negatively regulates NE-induced myocardial hypertrophy by inhibiting EGF receptor transactivation following NE stimulation.  相似文献   

4.
The G protein-coupled receptor P2Y2 nucleotide receptor (P2Y2R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y2Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y2R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-α protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y2R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y2R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.  相似文献   

5.
A constitutively active epidermal growth factor receptor (EGFR) mutant, EGFR variant III (EGFRvIII), has been detected at high frequencies in certain human cancers. This study evaluated transactivation and trafficking of erbB family members as a result of constitutive EGFR activity in a cancer cell line. Expression of EGFRvIII modulated erbB family members through different mechanisms; the erbB3 mRNA level was reduced, whereas wild-type EGFR (wtEGFR) and erbB2 protein levels were diminished, with no change in their mRNA levels, and there was no change in the erbB4 expression level. Both EGFR and erbB2 were internalized as a result of EGFRvIII''s activity and redistributed to the cell surface upon addition of AG1478, an inhibitor of wtEGFR/EGFRvIII catalytic activity. Acute activation of EGFRvIII by removing AG1478 from cells increased phosphorylation of both wtEGFR and erbB2 and caused differential trafficking of EGFRvIII''s activation partners; wtEGFR was directed primarily to lysosomal compartments and partially to recycling compartments, whereas erbB2 was directed primarily to recycling compartments and partially to lysosomal compartments. Our data demonstrate that the constitutive activity of EGFRvIII is sufficient to trigger endocytosis and trafficking of wtEGFR and erbB2, which may play a role in activating signaling pathways that are triggered during receptor endocytosis. (J Histochem Cytochem 58:529–541, 2010)  相似文献   

6.
癌组织中表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变是应用靶向药物EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)治疗的一个重要相关因素及预测指标。对其突变的检测可以指导TKI类药物(TKIs)的最佳应用。该种突变常出现在非小细胞肺癌(NSCLC)中,尤其是在亚洲女性、肺腺癌、非吸烟者中,与非小细胞肺癌患者对TKIs治疗的敏感性密切相关。本文旨在探讨利用EGFR基因的已知突变热点的相关知识选择适合不同分子遗传学背景的群体或/和个体的"个体化"治疗方案,最终达到延长肺癌患者生存时间和提高生活质量的双重目的。  相似文献   

7.
Cell signaling depends on spatiotemporally regulated molecular interactions. Although the movements of signaling proteins have been analyzed with various technologies, how spatial dynamics influence the molecular interactions that transduce signals is unclear. Here, we developed a single-molecule method to analyze the spatiotemporal coupling between motility, clustering, and signaling. The analysis was performed with the epidermal growth factor receptor (EGFR), which triggers signaling through its dimerization and phosphorylation after association with EGF. Our results show that the few EGFRs isolated in membrane subdomains were released by an EGF-dependent increase in their diffusion area, facilitating molecular associations and producing immobile clusters. Using a two-color single-molecule analysis, we found that the EGF-induced state transition alters the properties of the immobile clusters, allowing them to interact for extended periods with the cytoplasmic protein, GRB2. Our study reveals a novel correlation between this molecular interaction and its mesoscale dynamics, providing the initial signaling node.  相似文献   

8.
We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2–7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.  相似文献   

9.
The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus.  相似文献   

10.
The pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro. Significantly, inhibiting EGFR prevented PV IgG-induced blister formation in the passive transfer mouse model of pemphigus. These data demonstrate cross-talk between dsg3 and EGFR, that this cross-talk is regulated by p38, and that EGFR is a potential therapeutic target for pemphigus. Small-molecule inhibitors and monoclonal antibodies directed against EGFR are currently used to treat several types of solid tumors. This study provides the experimental rationale for investigating the use of EGFR inhibitors in pemphigus.  相似文献   

11.
Prolidase, also known as Xaa-Pro dipeptidase or peptidase D (PEPD), is a ubiquitously expressed cytosolic enzyme that hydrolyzes dipeptides with proline or hydroxyproline at the carboxyl terminus. In this article, however, we demonstrate that PEPD directly binds to and activates epidermal growth factor receptor (EGFR), leading to stimulation of signaling proteins downstream of EGFR, and that such activity is neither cell-specific nor dependent on the enzymatic activity of PEPD. In line with the pro-survival and pro-proliferation activities of EGFR, PEPD stimulates DNA synthesis. We further show that PEPD activates EGFR only when it is present in the extracellular space, but that PEPD is released from injured cells and tissues and that such release appears to result in EGFR activation. PEPD differs from all known EGFR ligands in that it does not possess an epidermal growth factor (EGF) motif and is not synthesized as a transmembrane precursor, but PEPD binding to EGFR can be blocked by EGF. In conclusion, PEPD is a ligand of EGFR and presents a novel mechanism of EGFR activation.  相似文献   

12.
阿霉素肾病大鼠表皮生长因子及其受体的表达   总被引:2,自引:0,他引:2  
目的研究阿霉素肾病大鼠肾组织中表皮生长因子(EGF)及其受体EGFR的表达分布以及表达量与尿蛋白之间关系。方法选择第5天、14天、28天作为动态观察的时点,同期设立正常对照。采用荧光定量RT-PCR、免疫组织化学及计算机图像定量分析EGF mRNA以及EGF、EGFR蛋白在肾组织的表达,同时测定24 h尿蛋白定量。WT1和EGFR双重免疫组化确定EGFR在肾小球内确切细胞定位。结果阿霉素注射后第5天,EGFmRNA即较正常增高,28 d明显增高并高于5 d和14 d。正常对照组EGF阳性细胞主要分布于远曲小管和髓袢,阿霉素组EGF还在集合管和近曲小管上表达;EGF阳性表达范围和强度随尿蛋白增加而增加;EGFmRNA表达量以及EGF在肾小管中的表达强度与24 h尿蛋白量呈正相关。肾小管上皮细胞广泛表达EGFR,阿霉素组EGFR在小管表达均高于正常,但组间各时点差异无显著性;随尿蛋白增加EGFR在肾小球内表达逐渐增多。EGFR在肾小球和肾小管中的表达强度均与24 h尿蛋白量呈正相关。WT1和EGFR双重免疫组化显示阿霉素肾病组EGFR可在足突细胞上表达,正常组则无。结论阿霉素肾病大鼠的肾小球脏层上皮有EGFR的表达。EGF/EGFR可能参与了阿霉素肾病的发病过程以及蛋白尿的形成。  相似文献   

13.
表皮生长因子受体(EGFR)是一种存在于细胞表面的多功能跨膜蛋白分子,具有酪氨酸蛋白激酶活性,EGFR与配体结合后启动细胞内信号传导通路,不同的通路之间存在交叉对话(Cross-talks)共同完成细胞生理功能.对EGFR的深入研究,不仅可阐明细胞生长和发育等重要的生命过程,而且在医药和工业上也将有广泛的应用.  相似文献   

14.
15.
人EGFR显性负性突变体负调控内源性EGFR功能的机制分析   总被引:1,自引:0,他引:1  
廖刚  王子卫  赵林  张能  董浦江 《生命科学研究》2010,14(3):203-207,239
通过定向克隆法构建真核表达载体pEGFPN1-DNEGFR,脂质体介导下转染体外培养的SGC-7901细胞,应用Western blotting检测DNEGFR-EGFP蛋白的表达,激光共聚焦显微镜对DNEGFR-EGFP亚细胞结构定位检测;并经RT-PCR、Western blotting检测DNEGFR-EGFP对内源性EGFRmRNA水平、蛋白及磷酸化水平的影响.成功检测到DNEGFR-EGFP蛋白的表达,DNEGFR-EGFP蛋白主要定位于细胞膜,DNEGFR-EGFP能降低内源性EGFR蛋白磷酸化水平,而对内源性EGFRmRNA水平及蛋白水平无影响.研究证明DNEGFR通过降低内源性EGFR蛋白磷酸化水平负调控EGFR功能,为靶向EGFR显性负性策略在肿瘤生物治疗中的进一步研究打下基础.  相似文献   

16.
Ligand-induced ubiquitylation of EGF receptor (EGFR) is an important regulatory mechanism that controls endocytic trafficking of the receptor and its signaling potential. Here we report that tetraspanin CD82/KAI1 specifically suppresses ubiquitylation of EGFR after stimulation with heparin-binding EGF or amphiregulin and alters the rate of recruitment of the activated receptor to EEA1-positive endosomes. The suppressive effect of CD82 is dependent on the heparin-binding domain of the ligand. Deletion of the C-terminal cytoplasmic domain of CD82 (CD82ΔC mutant) inhibits endocytic trafficking of the tetraspanin and compromises its activity toward heparin-binding EGF-activated EGFR. Reduced ubiquitylation of EGFR is accompanied by PKC-dependent increase in serine phosphorylation of c-Cbl in cells expressing elevated levels of CD82. Furthermore, phosphorylation of threonine 654 (PKC phosphorylation site) in the juxtamembrane domain of the receptor is considerably increased in CD82-expressing cells. These results describe previously unsuspected links between tetraspanin proteins and ubiquitylation of their molecular partners (e.g., EGFR). Our data identify CD82 as a new regulator of c-Cbl, which discriminatively controls the activity of this E3 ubiquitin ligase toward heparin-binding ligand-EGFR pairs. Taken together, these observations provide an important new insight into the modulatory role of CD82 in endocytic trafficking of EGF receptor.  相似文献   

17.
Cdc42-Interacting Protein-4 (CIP4) family adaptors have been implicated in promoting Epidermal Growth Factor Receptor (EGFR) internalization, however, their unique or overlapping functions remain unclear. Here, we show that although CIP4 was not required for early events in clathrin-mediated endocytosis of EGFR, CIP4 localizes to vesicles containing EGFR and Rab5. Furthermore, expression of constitutively active Rab5 led to accumulation of CIP4 and the related adaptor Toca-1 in giant endosomes. Using a mutagenesis approach, we show that localization of CIP4 to endosomes is mediated in part via the curved phosphoinositide-binding face of the CIP4 F-BAR domain. Downregulation of CIP4 in A431 epidermoid carcinoma cells by RNA interference led to elevated EGFR levels, compared to control cells. Although surface expression of EGFR was not affected by CIP4 silencing, EGF-induced transit of EGFR from EEA1-positive endosomes to lysosomes was reduced compared to control cells. This correlated with more robust activation of ERK kinase and entry to S phase in CIP4-depleted A431 cells, compared to control cells. The combined silencing of CIP4 and Toca-1 was more effective in driving cells into S phase, suggesting a partial redundancy in their functions. Overall, our results implicate CIP4 and Toca-1 in regulating late events in EGFR trafficking from endosomes that serves to limit sustained ERK activation within the endosomal compartment.  相似文献   

18.
Abstract

The epidermal growth factor receptor (EGFR) and insulin receptor undergo slow post-translational modification by which they acquire hormone binding and tyrosine kinase (EGFR) function. The half-time for acquisition of EGF or insulin binding activity is 30-40 min and of tyrosine kinase activity (EGFR), is 10-15 min. Tunicamycin, an inhibitor of N-linked oligosaccharide addition, blocks acquisition of both EGF and insulin binding activity. With EGFR, activation precedes acquisition of resistance to endoglucos-aminidase H (t1/2 75 min), a medial Golgi event. Treatment of active high mannose receptor with endo H generates fully active aglyco-receptor; thus, core oligosaccharide addition is a prerequisite for activation, but not for EGF binding per se. EGFR is activated in and translocated from the endoplasmic reticulum (ER) slowly (t1/2 75 min). Since translocation rate equals the rate for acquisition of endo H resistance, transit from the ER is rate limiting for EGFR maturation. Tunicamycin inhibits exit from the ER parallel to its effect on acquisition of binding activity. Insulin proreceptor, a 210 kDa high-mannose glycopolypeptide, acquires insulin binding function (t1/2 45 min) then is proteolytically cleaved (t1/2 3 hr) into subunits of the mature α2β2 receptor. Modification giving rise to insulin binding activity is due to a conformational change in the binding domain, since human autoimmune antibody recognizes only the active species, while rabbit polyclonal antibody recognizes all forms. Newly-translated EGF proreceptor lacks a functional tyrosine domain capable of autophosphorylation; 30-40 min after translation, while still in  相似文献   

19.
应用不连续Percoll梯度液和选择性贴壁法分离纯化精原干细胞:c-kit细胞免疫组化鉴定细胞类型;MTT法研究EGF对精原干细胞增殖的效应;加入MAPK-ERK信号通路特异性抑制剂PD98059,探讨EGF对精原干细胞增殖作用的可能机制.证明:1)c-kit细胞免疫组化结果显示分离得到细胞为精原千细胞;2)MTT结果显示各实验组比对照组细胞数量均有显著增多(p<0.01),且20 ng/mL剂量组的增殖作用最明显;3)与对照组相比,加入PD98095组的活细胞数有显著下降(p<0.01).结论:EGF能够促进精原干细胞的增殖,并且可以通过MAPK-ERK信号通路起作用.  相似文献   

20.
研究表皮生长因子(EGF)对体外培养的精原干细胞自我更新、增殖过程中所起的调控作用;建立完善的精原干细胞体外培养体系,为精原干细胞的体外大量扩增提供技术和方法.为治疗男性不育等提供相关技术。通过研究证明EGF能够促进精原干细胞的增殖,EGF受体的活化对EGF促进精原干细胞增殖起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号