首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Shen Y  Cheng SC 《Biometrics》1999,55(4):1093-1100
In the context of competing risks, the cumulative incidence function is often used to summarize the cause-specific failure-time data. As an alternative to the proportional hazards model, the additive risk model is used to investigate covariate effects by specifying that the subject-specific hazard function is the sum of a baseline hazard function and a regression function of covariates. Based on such a formulation, we present an approach to constructing simultaneous confidence intervals for the cause-specific cumulative incidence function of patients with given risk factors. A melanoma data set is used for the purpose of illustration.  相似文献   

2.
This paper deals with hazard regression models for survival data with time-dependent covariates consisting of updated quantitative measurements. The main emphasis is on the Cox proportional hazards model but also additive hazard models are discussed. Attenuation of regression coefficients caused by infrequent updating of covariates is evaluated using simulated data mimicking our main example, the CSL1 liver cirrhosis trial. We conclude that the degree of attenuation depends on the type of stochastic process describing the time-dependent covariate and that attenuation may be substantial for an Ornstein-Uhlenbeck process. Also trends in the covariate combined with non-synchronous updating may cause attenuation. Simple methods to adjust for infrequent updating of covariates are proposed and compared to existing techniques using both simulations and the CSL1 data. The comparison shows that while existing, more complicated methods may work well with frequent updating of covariates the simpler techniques may have advantages in larger data sets with infrequent updatings.  相似文献   

3.
Zexi Cai  Tony Sit 《Biometrics》2020,76(4):1201-1215
Quantile regression is a flexible and effective tool for modeling survival data and its relationship with important covariates, which often vary over time. Informative right censoring of data from the prevalent cohort within the population often results in length-biased observations. We propose an estimating equation-based approach to obtain consistent estimators of the regression coefficients of interest based on length-biased observations with time-dependent covariates. In addition, inspired by Zeng and Lin 2008, we also develop a more numerically stable procedure for variance estimation. Large sample properties including consistency and asymptotic normality of the proposed estimator are established. Numerical studies presented demonstrate convincing performance of the proposed estimator under various settings. The application of the proposed method is demonstrated using the Oscar dataset.  相似文献   

4.
Imputation, weighting, direct likelihood, and direct Bayesian inference (Rubin, 1976) are important approaches for missing data regression. Many useful semiparametric estimators have been developed for regression analysis of data with missing covariates or outcomes. It has been established that some semiparametric estimators are asymptotically equivalent, but it has not been shown that many are numerically the same. We applied some existing methods to a bladder cancer case-control study and noted that they were the same numerically when the observed covariates and outcomes are categorical. To understand the analytical background of this finding, we further show that when observed covariates and outcomes are categorical, some estimators are not only asymptotically equivalent but also actually numerically identical. That is, although their estimating equations are different, they lead numerically to exactly the same root. This includes a simple weighted estimator, an augmented weighted estimator, and a mean-score estimator. The numerical equivalence may elucidate the relationship between imputing scores and weighted estimation procedures.  相似文献   

5.
Summary Clinicians are often interested in the effect of covariates on survival probabilities at prespecified study times. Because different factors can be associated with the risk of short‐ and long‐term failure, a flexible modeling strategy is pursued. Given a set of multiple candidate working models, an objective methodology is proposed that aims to construct consistent and asymptotically normal estimators of regression coefficients and average prediction error for each working model, that are free from the nuisance censoring variable. It requires the conditional distribution of censoring given covariates to be modeled. The model selection strategy uses stepup or stepdown multiple hypothesis testing procedures that control either the proportion of false positives or generalized familywise error rate when comparing models based on estimates of average prediction error. The context can actually be cast as a missing data problem, where augmented inverse probability weighted complete case estimators of regression coefficients and prediction error can be used ( Tsiatis, 2006 , Semiparametric Theory and Missing Data). A simulation study and an interesting analysis of a recent AIDS trial are provided.  相似文献   

6.
Huang J  Harrington D 《Biometrics》2002,58(4):781-791
The Cox proportional hazards model is often used for estimating the association between covariates and a potentially censored failure time, and the corresponding partial likelihood estimators are used for the estimation and prediction of relative risk of failure. However, partial likelihood estimators are unstable and have large variance when collinearity exists among the explanatory variables or when the number of failures is not much greater than the number of covariates of interest. A penalized (log) partial likelihood is proposed to give more accurate relative risk estimators. We show that asymptotically there always exists a penalty parameter for the penalized partial likelihood that reduces mean squared estimation error for log relative risk, and we propose a resampling method to choose the penalty parameter. Simulations and an example show that the bootstrap-selected penalized partial likelihood estimators can, in some instances, have smaller bias than the partial likelihood estimators and have smaller mean squared estimation and prediction errors of log relative risk. These methods are illustrated with a data set in multiple myeloma from the Eastern Cooperative Oncology Group.  相似文献   

7.
For multicenter randomized trials or multilevel observational studies, the Cox regression model has long been the primary approach to study the effects of covariates on time-to-event outcomes. A critical assumption of the Cox model is the proportionality of the hazard functions for modeled covariates, violations of which can result in ambiguous interpretations of the hazard ratio estimates. To address this issue, the restricted mean survival time (RMST), defined as the mean survival time up to a fixed time in a target population, has been recommended as a model-free target parameter. In this article, we generalize the RMST regression model to clustered data by directly modeling the RMST as a continuous function of restriction times with covariates while properly accounting for within-cluster correlations to achieve valid inference. The proposed method estimates regression coefficients via weighted generalized estimating equations, coupled with a cluster-robust sandwich variance estimator to achieve asymptotically valid inference with a sufficient number of clusters. In small-sample scenarios where a limited number of clusters are available, however, the proposed sandwich variance estimator can exhibit negative bias in capturing the variability of regression coefficient estimates. To overcome this limitation, we further propose and examine bias-corrected sandwich variance estimators to reduce the negative bias of the cluster-robust sandwich variance estimator. We study the finite-sample operating characteristics of proposed methods through simulations and reanalyze two multicenter randomized trials.  相似文献   

8.
We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.  相似文献   

9.
This paper extends the multilevel survival model by allowing the existence of cured fraction in the model. Random effects induced by the multilevel clustering structure are specified in the linear predictors in both hazard function and cured probability parts. Adopting the generalized linear mixed model (GLMM) approach to formulate the problem, parameter estimation is achieved by maximizing a best linear unbiased prediction (BLUP) type log‐likelihood at the initial step of estimation, and is then extended to obtain residual maximum likelihood (REML) estimators of the variance component. The proposed multilevel mixture cure model is applied to analyze the (i) child survival study data with multilevel clustering and (ii) chronic granulomatous disease (CGD) data on recurrent infections as illustrations. A simulation study is carried out to evaluate the performance of the REML estimators and assess the accuracy of the standard error estimates.  相似文献   

10.
Summary We derive regression estimators that can compare longitudinal treatments using only the longitudinal propensity scores as regressors. These estimators, which assume knowledge of the variables used in the treatment assignment, are important for reducing the large dimension of covariates for two reasons. First, if the regression models on the longitudinal propensity scores are correct, then our estimators share advantages of correctly specified model‐based estimators, a benefit not shared by estimators based on weights alone. Second, if the models are incorrect, the misspecification can be more easily limited through model checking than with models based on the full covariates. Thus, our estimators can also be better when used in place of the regression on the full covariates. We use our methods to compare longitudinal treatments for type II diabetes mellitus.  相似文献   

11.
Ko H  Davidian M 《Biometrics》2000,56(2):368-375
The nonlinear mixed effects model is used to represent data in pharmacokinetics, viral dynamics, and other areas where an objective is to elucidate associations among individual-specific model parameters and covariates; however, covariates may be measured with error. For additive measurement error, we show substitution of mismeasured covariates for true covariates may lead to biased estimators for fixed effects and random effects covariance parameters, while regression calibration may eliminate bias in fixed effects but fail to correct that in covariance parameters. We develop methods to take account of measurement error that correct this bias and may be implemented with standard software, and we demonstrate their utility via simulation and application to data from a study of HIV dynamics.  相似文献   

12.
Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data analysis that the compound covariate method generally competes well with ridge regression and Lasso methods, both already well-studied methods for predicting survival outcomes with a large number of covariates. Furthermore, we develop a refinement of the compound covariate method by incorporating likelihood information from multivariate Cox models. The new proposal is an adaptive method that borrows information contained in both the univariate and multivariate Cox regression estimators. We show that the new proposal has a theoretical justification from a statistical large sample theory and is naturally interpreted as a shrinkage-type estimator, a popular class of estimators in statistical literature. Two datasets, the primary biliary cirrhosis of the liver data and the non-small-cell lung cancer data, are used for illustration. The proposed method is implemented in R package “compound.Cox” available in CRAN at http://cran.r-project.org/.  相似文献   

13.
Jiang  Jiancheng; Haibo  Zhou 《Biometrika》2007,94(2):359-369
We consider the additive hazard model when some of the truecovariates are measured only on a randomly selected validationset whereas auxiliary covariates are observed for all studysubjects. An updated pseudoscore estimation approach is proposedfor the parameters of the additive hazard model. It allows oneto fit the model with auxiliary covariates, while leaving thebaseline hazard unspecified. Asymptotic properties of the proposedestimators are established, and consistent standard error estimatorsare developed. Simulations demonstrate that the asymptotic approximationsof the proposed estimates are adequate for practical use. Areal example is used to illustrate the performance of the proposedmethod.  相似文献   

14.
15.
This article investigates an augmented inverse selection probability weighted estimator for Cox regression parameter estimation when covariate variables are incomplete. This estimator extends the Horvitz and Thompson (1952, Journal of the American Statistical Association 47, 663-685) weighted estimator. This estimator is doubly robust because it is consistent as long as either the selection probability model or the joint distribution of covariates is correctly specified. The augmentation term of the estimating equation depends on the baseline cumulative hazard and on a conditional distribution that can be implemented by using an EM-type algorithm. This method is compared with some previously proposed estimators via simulation studies. The method is applied to a real example.  相似文献   

16.
We propose an extension to the estimating equations in generalized linear models to estimate parameters in the link function and variance structure simultaneously with regression coefficients. Rather than focusing on the regression coefficients, the purpose of these models is inference about the mean of the outcome as a function of a set of covariates, and various functionals of the mean function used to measure the effects of the covariates. A commonly used functional in econometrics, referred to as the marginal effect, is the partial derivative of the mean function with respect to any covariate, averaged over the empirical distribution of covariates in the model. We define an analogous parameter for discrete covariates. The proposed estimation method not only helps to identify an appropriate link function and to suggest an underlying distribution for a specific application but also serves as a robust estimator when no specific distribution for the outcome measure can be identified. Using Monte Carlo simulations, we show that the resulting parameter estimators are consistent. The method is illustrated with an analysis of inpatient expenditure data from a study of hospitalists.  相似文献   

17.
Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.  相似文献   

18.
Survival estimation using splines   总被引:1,自引:0,他引:1  
A nonparametric maximum likelihood procedure is given for estimating the survivor function from right-censored data. It approximates the hazard rate by a simple function such as a spline, with different approximations yielding different estimators. A special case is that proposed by Nelson (1969, Journal of Quality Technology 1, 27-52) and Altshuler (1970, Mathematical Biosciences 6, 1-11). The estimators are uniformly consistent and have the same asymptotic weak convergence properties as the Kaplan-Meier (1958, Journal of the American Statistical Association 53, 457-481) estimator. However, in small and in heavily censored samples, the simplest spline estimators have uniformly smaller mean squared error than do the Kaplan-Meier and Nelson-Altshuler estimators. The procedure is extended to estimate the baseline hazard rate and regression coefficients in the Cox (1972, Journal of the Royal Statistical Society, Series B 34, 187-220) proportional hazards model and is illustrated using experimental carcinogenesis data.  相似文献   

19.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

20.
The nonparametric transformation model makes no parametric assumptions on the forms of the transformation function and the error distribution. This model is appealing in its flexibility for modeling censored survival data. Current approaches for estimation of the regression parameters involve maximizing discontinuous objective functions, which are numerically infeasible to implement with multiple covariates. Based on the partial rank (PR) estimator (Khan and Tamer, 2004), we propose a smoothed PR estimator which maximizes a smooth approximation of the PR objective function. The estimator is shown to be asymptotically equivalent to the PR estimator but is much easier to compute when there are multiple covariates. We further propose using the weighted bootstrap, which is more stable than the usual sandwich technique with smoothing parameters, for estimating the standard error. The estimator is evaluated via simulation studies and illustrated with the Veterans Administration lung cancer data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号