首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Peroxisome proliferator-activated receptors play an important role in the differentiation of different cell lines. In this study we demonstrate that PPAR-alpha ligands (clofibrate and ciprofibrate) and PPAR-gamma ligands (troglitazone and 15d-prostaglandin J2) inhibit growth and induce monocytic differentiation in HL-60 cells, whereas only PPAR-gamma ligands inhibit growth of U937 cells. Differentiation was demonstrated by the analysis of surface antigen expression CD11b and CD14, and by the characteristic morphological changes. PPAR-gamma ligands are more effective than PPAR-alpha ligands in the inhibition of cell growth and in the induction of differentiation. The physiological product of lipid peroxidation, 4-hydroxynonenal (HNE), which alone induces granulocytic-like differentiation of HL-60 cells, potentiates the monocytic differentiation induced by ciprofibrate, troglitazone, and 15d-prostaglandin J2. The same HNE treatment significantly inhibits U937 cell growth and potentiates the inhibition of cell growth in PPAR-gamma ligand-treated cells. However, HNE does not induce a significant number of CD14-positive U937 cells. HNE causes a great increase of PPAR-gamma expression in both HL-60 and U937 cells, whereas it does not modify the PPAR-alpha expression. This observation may account for the high synergistic effect displayed by HNE and PPAR-gamma ligands in the inhibition of cell growth and differentiation induction. These results represent the first evidence of the involvement of a product of lipid peroxidation in the modulation of PPAR ligand activity and suggest a relationship between HNE and PPAR ligand pathways in leukemic cell growth and differentiation.  相似文献   

4.
Recent studies have shown that normal human alveolar macrophages and blood monocytes, as well as HL-60 and U937 monocyte cell lines, newly express IL-2R after stimulation with rIFN-gamma or LPS. In addition, macrophages transiently express IL-2R in vivo during immunologically mediated diseases such as pulmonary sarcoidosis and allograft rejection. We therefore investigated in vitro factors that modulate macrophage expression of IL-2R. IL-2R were induced on normal alveolar macrophages, blood monocytes, and HL-60 cells using rIFN-gamma (24 to 48 h at 240 U/ml), and cells were cultured for an additional 12 to 24 h with rIL-2 (100 U/ml), recombinant granulocyte-macrophage CSF (rGM-CSF, 1000 U/ml), rGM-CSF plus indomethacin (2 X 10(-6) M), PGE2 (0.1 to 10 ng/ml), 1 X 10(-6) M levels of caffeine, theophylline, and dibutyryl cyclic AMP, or medium alone. IL-2R expression was quantitated by cell ELISA (HL-60 cells) or determined by immunoperoxidase staining (alveolar macrophages, blood monocytes, and HL-60 cells), using anti-Tac and other CD25 mAb. PGE production was assayed by RIA. We found greater than 95% of alveolar macrophages, monocytes, and HL-60 cells expressed IL-2R after rIFN-gamma treatment and remained IL-2R+ in the presence of IL-2R or medium alone. By comparison, greater than 95% of cells induced to express IL-2R became IL-2R- after addition of rGM-CSF, and the culture supernatants from GM-CSF-treated cells contained increased levels of PGE. This inhibition of macrophage IL-2R expression by rGM-CSF was blocked by indomethacin, and IL-2R+ macrophages became IL-2R- after addition of PGE2 alone. These findings indicate GM-CSF down-regulates IL-2R expression by human macrophages via induction of PGE synthesis. Moreover, a similar down-regulation of IL-2R expression was seen after stimulation with caffeine, theophylline, or dibutyryl cyclic AMP. Hence, GM-CSF, PGE, and other pharmacologic agents that act to increase intracellular levels of cAMP may play a modulatory role, antagonistic to that of IFN-gamma on cellular expression of IL-2R by human inflammatory macrophages in vivo.  相似文献   

5.
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).  相似文献   

6.
Th2 phenotype cytokine, IL-4, plays an important role in the regulation of Th1 cell responses and spontaneous remission of inflammatory CNS demyelinating diseases such as multiple sclerosis (MS). In this study we demonstrate IL-4-induced down-regulation of inducible NO synthase (iNOS) expression and survival of differentiating oligodendrocyte progenitors (OPs) in proinflammatory cytokine (Cyt-Mix)-treated CNS glial cells, which is a condition similar to that observed in the brain of a patient with MS. IL-4 treatment of Cyt-Mix-treated CNS glial cells significantly decreased iNOS expression/NO release with a parallel increase in survival of differentiating OPs. IL-4 effects were concentration-dependent and could be reversed by anti-IL-4R Abs. The use of inhibitors for Akt, p38 MAPK, and peroxisome proliferator-activated receptor gamma (PPAR-gamma) antagonist revealed that inhibition of Cyt-Mix-induced iNOS expression and survival of differentiating OPs by IL-4 is via PPAR-gamma activation. There was a coordinate increase in the expression of both PPAR-gamma and its natural ligand-producing enzyme 12/15-lipoxygenase (12/15-LOX) in IL-4-treated cells. Next, EMSA, immunoblots, and transient cotransfection studies with reporter plasmids (pNF-kappaB-Luc and pTK-PPREx3-Luc) and 12/15-LOX small interfering RNA revealed that IL-4-induced PPAR-gamma activation antagonizes NF-kappaB transactivation in Cyt-Mix-treated astrocytes. In support of this finding, similarly treated 12/15-LOX(-/-) CNS glial cells further corroborated the result. Furthermore, there was reversal of IL-4 inductive effects in the brain of LPS-challenged 12/15-LOX(-/-) mice when compared with LPS-challenged wild-type mice. Together, these data for the first time demonstrate the inhibition of Cyt-Mix-induced NF-kappaB transactivation in CNS glial cells by IL-4 via PPAR-gamma activation, hence its implication for the protection of differentiating OPs during MS and other CNS demyelinating diseases.  相似文献   

7.
Peroxisome proliferator-activated receptors (PPAR) are members of a nuclear hormone receptor superfamily that includes receptors for steroids, retinoids, and thyroid hormone, all of which are known to affect the immune response. Previous studies dealing with PPAR-gamma expression in the immune system have been limited. Recently, PPAR-gamma was identified in monocyte/macrophage cells. In this study we examined the role of PPAR-gamma in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. The hypothesis we are testing is whether PPAR-gamma plays an important role in EAE pathogenesis and whether PPAR-gamma ligands can inhibit the clinical expression of EAE. Initial studies have shown that the presence of the PPAR-gamma ligand 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ2) inhibits the proliferation of Ag-specific T cells from the spleen of myelin basic protein Ac(1-11) TCR-transgenic mice. 15d-PGJ2 suppressed IFN-gamma, IL-10, and IL-4 production by both Con A- and myelin basic protein Ac(1-11) peptide-stimulated lymphocytes as determined by ELISA and ELISPOT assay. Culture of encephalitogenic T cells with 15d-PGJ2 in the presence of Ag reduced the ability of these cells to adoptively transfer EAE. Examination of the target organ, the CNS, during the course of EAE revealed expression of PPAR-gamma in the spinal cord inflammatory infiltrate. Administration of 15d-PGJ2 before and at the onset of clinical signs of EAE significantly reduced the severity of disease. These results suggest that PPAR-gamma ligands may be a novel therapeutic agent for diseases such as multiple sclerosis.  相似文献   

8.
9.
10.
Proteinase 3 (PR3), also called myeloblastin, is involved in the control of myeloid cell growth, but the underlying molecular mechanisms have not been elucidated. In U937/PR3, stably transfected with PRCRSV/PR3 to overexpress PR3, PMA-induced p21 expression was significantly decreased as compared with control U937, and this phenomenon was reversed in the presence of the serine proteinase inhibitor, pefabloc. Conversely, when PR3 was inactivated by small interfering RNA, p21 protein was increased, and PMA-induced monocytic differentiation was potentiated. Mass spectrometry analysis identified Ala45 as the primary cleavage site on p21, and the recombinant mutated p21A45R, generated by site-directed mutagenesis and expressed in Escherichia coli, was resistant to in vitro PR3 cleavage. The U937 cells were then stably transfected with either PRCRSV/p21 or PRCRSV/p21A45R, to ectopically express wild type p21 or PR3-resistant p21, respectively. In U937/p21A45R treated with PS-341, a selective proteasome inhibitor, a significant decrease in the S phase and a blockade in the G0-G1 phase of cell cycle were observed when compared with U937/p21 or control U937. This suggested that both PR3 and the proteasome are efficiently involved in the proteolytic regulation of p21 expression in myeloid cells. Moreover, PMA-induced p21 expression was more pronounced in U937/p21A45R compared with U937/p21 and was concomitant with the morphological features of early differentiation. Our data demonstrated that p21 is one specific target of PR3 and that PR3-mediated p21 cleavage prevents monocytic differentiation.  相似文献   

11.
Previously, we elucidated the intracellular mechanisms by which neutrophil elastase (NE) up-regulates inflammatory gene expression in bronchial epithelial cells. In this study, we examine the effects of both IL-1 and NE on inflammatory gene expression in 16HBE14o- bronchial epithelial cells and investigate approaches to abrogate these inflammatory responses. IL-1 induced IL-8 protein production in time- and dose-dependent fashions, an important observation given that IL-8 is a potent neutrophil chemoattractant and a key inflammatory mediator. IL-1 and NE were shown to activate the p38 MAPK pathway in 16HBE14o- cells. Western blot analysis demonstrated IL-1R-associated kinase 1 (IRAK-1) degradation in response to stimulation with both IL-1 and NE. In addition, the expression of dominant negative IRAK-1 (IRAK-1delta), IRAK-2delta, or IRAK-4delta inhibited IL-1- and NE-induced NF-kappaB-linked reporter gene expression. Dominant negative versions of the intracellular adaptor proteins MyD88 (MyD88delta) and MyD88 adaptor-like (Mal P/H) abrogated NE-induced NF-kappaB reporter gene expression. In contrast, only MyD88delta was found to inhibit IL-1-induced NF-kappaB reporter activity. We also investigated the vaccinia virus proteins, A46R and A52R, which have been shown to antagonize IL-1 signaling. Transfection with A46R or A52R cDNA inhibited IL-1- and NE-induced NF-kappaB and IL-8R gene expression and IL-8 protein production in primary and transformed bronchial epithelial cells. Furthermore, cytokine array studies demonstrated that IL-1 and NE can up-regulate the expression of IL-6, oncostatin M, epithelial cell-derived neutrophil activating peptide-78, growth-related oncogene family members, vascular endothelial growth factor, and GM-CSF, with induction of these proteins inhibited by the viral proteins. These findings identify vaccinia virus proteins as possible therapeutic agents for the manifestations of several inflammatory lung diseases.  相似文献   

12.
Mast cells, platelets, and some macrophages are abundant sources of PGD(2) and its active metabolite 15-deoxy-Delta(12,14)-PGJ(2) (15-d-PGJ(2)). The lipid mediator 15-d-PGJ(2) regulates numerous processes, including adipogenesis, apoptosis, and inflammation. The 15-d-PGJ(2) has been shown to both inhibit as well as induce the production of inflammatory mediators such as TNF-alpha, IL-1beta, and cyclooxygenase, mostly occurring via a nuclear receptor called peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Data concerning the effects of 15-d-PGJ(2) on human T cells and immune regulation are sparse. IL-8, a cytokine with both chemotactic and angiogenic effects, is produced by T lymphocytes following activation. Whether 15-d-PGJ(2) can regulate the production of IL-8 in T cells in unknown. Interestingly, 15-d-PGJ(2) treatment of unstimulated T cells induces cell death. In contrast, in activated human T lymphocytes, 15-d-PGJ(2) does not kill them, but induces the synthesis of IL-8. In this study, we report that 15-d-PGJ(2) induced a significant increase in both IL-8 mRNA and protein from activated human T lymphocytes. The induction of IL-8 by 15-d-PGJ(2) did not occur through the nuclear receptor PPAR-gamma, as synthetic PPAR-gamma agonists did not mimic the IL-8-inducing effects of 15-d-PGJ(2). The mechanism of IL-8 induction was through a mitogen-activated protein kinase and NF-kappaB pathway, as inhibitors of both systems abrogated IL-8 protein induction. Therefore, 15-d-PGJ(2) can act as a potent proinflammatory mediator in activated T cells by inducing the production of IL-8. These findings show the complexity with which 15-d-PGJ(2) regulates T cells by possessing both pro- and anti-inflammatory properties depending on the activation state of the cell. The implications of this research also include that caution is warranted in assigning a solely anti-inflammatory role for 15-d-PGJ(2).  相似文献   

13.
A very late activating antigen-alpha4 (CD49d) monoclonal antibody (mAb), BU49 was found to induce phosphorylation of a cAMP response element-binding protein (CREB) in the human monocyte-like cell line, U937. This phosphorylation of CREB was completely inhibited by a protein kinase A (PKA) inhibitor H-89 with the optimum concentration (completely inhibits PKA). Furthermore, BU49 strongly and rapidly (within 5 hr) induced homotypic cell aggregation in the U937 cells accompanied by CREB phosphorylation. This cell aggregation was also completely inhibited by the addition of H-89. Interestingly, both of two mAbs (mAb13 and 4B4) recognizing different epitopes on the CD29 (beta1 integrin) completely inhibited this aggregation at the late phase (18 to 24 hr) but not at the early phase (5 hr) after cultured with BU49. On the other hand, BU49 significantly enhanced interleukin-8 (IL-8) production from the U937 cells into the culture supernatant. In addition, this IL-8 production was significantly blocked in the presence of H-89 with the optimum concentration. However, a CD29 mAb which inhibits homotypic cell aggregation could not block this IL-8 production. Taken together, these findings indicate that BU49 induces CREB phosphorylation mainly mediated by PKA, which finally results in the induction of homotypic cell aggregation and the enhancement of IL-8 production. Furthermore, these findings also indicate that the enhancement of IL-8 production from the U937 cells induced by BU49 partially depends on CREB phosphorylation mainly mediated by PKA.  相似文献   

14.
15.
It has been reported that interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) expression is regulated by peroxisome proliferator-activated receptor (PPAR)-gamma synthetic ligands. We have shown previously that cytosolic phospholipase A2 (cPLA2) is able to activate gene expression through PPAR-gamma response elements (Pawliczak, R., Han, C., Huang, X. L., Demetris, A. J., Shelhamer, J. H., and Wu, T. (2002) J. Biol. Chem. 277, 33153-33163). In this study we investigated the influence of cPLA2 and secreted phospholipase A2 (sPLA2) Group IIA, Group V, and Group X on IL-8 and COX-2 expression in human lung epithelial cells (A549 cells). We also studied the results of cPLA2 activation by epidermal growth factor (EGF) and calcium ionophore (A23187) on IL-8 and COX-2 reporter gene activity, mRNA level, and protein synthesis. cPLA2 overexpression and activation increased both IL-8 and COX-2 reporter gene activity. Overexpression and activation of Group IIA, Group V, or Group X sPLA2s did not increase IL-8 and COX-2 reporter gene activity. Methyl arachidonyl fluorophosphate, a cPLA2 inhibitor, inhibited the effect of A23187 and of EGF on both IL-8 and COX-2 reporter gene activity, steady state levels of IL-8 and COX-2 mRNA, and IL-8 and COX-2 protein expression. Small inhibitory RNAs directed against PPAR-gamma1 and -gamma2 blunted the effect of A23187 and of EGF on IL-8 and COX-2 protein expression. Moreover small inhibitory RNAs directed against cPLA2 decreased the effect of A23187 and EGF on IL-8 and COX-2 protein expression. These results demonstrate that cPLA2 has an influence on IL-8 and COX 2 gene and protein expression at least in part through PPAR-gamma.  相似文献   

16.
Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.  相似文献   

17.
Cyclosporin A (CsA) is an immunosuppresor drug that has been used in the treatment of several types of inflammatory diseases. In some of them the inhibition of T-lymphocyte activation does not suitably account for the observed beneficial effect, suggesting that CsA could act on other types of cells. The present study was undertaken to determine the effect of CsA on inflammatory cytokine secretion by U937 monocyte cells. Undifferentiated and dimethylsulfoxide (DMSO) differentiated U937 cells were incubated with different concentrations of CsA (200, 20 and 2 ng/mL) in the presence or absence of phorbol-myristate-acetate (PMA). Interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), IL-6 and IL-8 levels were measured in supernatants using specific enzyme-linked immunosorbent assays. At the highest concentration used (200 ng/mL) CsA decreased the basal and stimulated secretion of all the inflammatory cytokines studied in both undifferentiated and differentiated cells, with the only exception of PMA-stimulated IL-1 secretion by undifferentiated cells. However, only basal secretion of interleukin-8 in both undifferentiated and DMSO-differentiated U937 cells was significantly reduced by CsA at the highest concentration (200 ng/ mL). At therapeutic concentrations in vivo, CsA exerts a predominant effect on IL-8 secretion by human mononuclear phagocytes.  相似文献   

18.
BACKGROUND: In a previous report (Higai K et al., Biol Pharm Bull, 2007), glycated human serum albumin (Glc-HSA) was found to induce interleukin-8 (IL-8) mRNA expression in human monocyte-derived U937 cells through a reactive oxygen species (ROS)-dependent pathway; however, Glc-HSA signaling has not been elucidated in macrophages. METHODS: U937 cells were differentiated by treatment with 50 ng/mL phorbol 12-myristate 13-acetate (PMA) for 2 days and the macrophage-like differentiated U937 (differentiated U937) cells were stimulated with Glc-HSA and glycolaldehyde dimer-modified HSA (GA-HSA) in the presence of various signaling inhibitors. Macrophage inflammatory protein-1beta (MIP-1beta) mRNA expression was determined by real-time PCR. Intracellular ROS generation was estimated by confocal laser microscopy. RESULTS: Glc-HSA and GA-HSA markedly enhanced MIP-1beta mRNA expression in differentiated U937 cells. Enhanced MIP-1beta mRNA expression was completely suppressed by the ROS scavenger N-acetyl-l-cysteine, the NADPH oxidase inhibitors diphenylene iodonium and apocynin, and the protein kinase C (PKC)-delta inhibitor rottlerin. Furthermore, ROS generation was suppressed completely by rottlerin but not by the PKC-gamma inhibitor Ro318425 or the PKC-alpha, -beta1 and -micro inhibitor Go6976. CONCLUSION: Glc-HSA and GA-HSA enhance MIP-1beta mRNA expression in differentiated U937 cells through PKC-delta-dependent activation of NADPH oxidase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号