首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposable elements (TEs) play a fundamental role in the evolution of genomes. In Drosophila they are disproportionately represented in regions of low recombination, such as in heterochromatin. This pattern has been attributed to selection against repeated elements in regions of normal recombination, owing to either (1) the slightly deleterious position effects of TE insertions near or into genes, or (2) strong selection against chromosomal abnormalities arising from ectopic exchange between TE repeats. We have used defective non-long-terminal repeat (LTR) TEs that are "dead-on-arrival" (DOA) and unable to transpose in order to estimate spontaneous deletion rates in different constituents of chromatin. These elements have previously provided evidence for an extremely high rate of spontaneous deletion in Drosophila as compared with mammals, potentially explaining at least part of the differences in the genome sizes in these organisms. However, rates of deletion could be overestimated due to positive selection for a smaller likelihood of ectopic exchange. In this article, we show that rates of spontaneous deletion in DOA repeats are as high in heterochromatin and regions of euchromatin with low recombination as they are in regions of euchromatin with normal recombination. We have also examined the age distribution of five non-LTR families throughout the genome. We show that there is substantial variation in the historical pattern of transposition of these TEs. The overrepresentation of TEs in the heterochromatin is primarily due to their longer retention time in heterochromatin, as evidenced by the average time since insertion. Fragments inserted recently are much more evenly distributed in the genome. This contrast demonstrates that the accumulation of TEs in heterochromatin and in euchromatic regions of low recombination is not due to biased transposition but by greater probabilities of fixation in these regions relative to regions of normal recombination.  相似文献   

2.
Population studies of the distribution of transposable elements (TEs) on the chromosomes of Drosophila melanogaster have suggested that their copy number increase due to transposition is balanced by some form of natural selection. Theory suggests that, as a consequence of deleterious ectopic meiotic exchange between TEs, selection can favor genomes with lower TE copy numbers. This predicts that TEs should be less deleterious, and hence more abundant, in chromosomal regions in which recombination is reduced. To test this, we surveyed the abundance and locations of 10 families of TEs in recombination-suppressing chromosomal inversions from a natural population. The sample of 49 chromosomes included multiple independent isolates of seven different inversions and a corresponding set of standard chromosomes. For all 10 TE families pooled, copy numbers were significantly higher overall within low frequency inversions than within corresponding regions of standard chromosomes. TEs occupied chromosomal sites at significantly higher frequencies within the In(3R)M0 and In(3R)K inversions than within the corresponding regions of standard 3R chromosomes. These results are consistent with the predictions of the ectopic exchange model.  相似文献   

3.
C. Hoogland  C. Biemont 《Genetics》1996,144(1):197-204
Data of insertion site localization and site occupancy frequency of P, hobo, I, copia, mdg1, mdg3, 412, 297, and roo transposable elements (TEs) on the polytene chromosomes of Drosophila melanogaster were extracted from the literature. We show that TE insertion site number per chromosomal division was significantly correlated with the amount of DNA. The insertion site number weighted by DNA content was not correlated with recombination rate for all TEs except hobo, for which a positive correlation was detected. No global tendency emerged in the relationship between TE site occupancy frequency, weighted by DNA content, and recombination rate; a strong negative correlation was, however, found for the 3L arm. A possible dominant deleterious effect of chromosomal rearrangements due to recombination between TE insertions is thus not the main factor explaining the dynamics of TEs, since this hypothesis implies a negative relationship between recombination rate and both TE insertion site number and site occupancy frequency. The alternative hypothesis of selection against deleterious effects of insertional mutations is discussed.  相似文献   

4.
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

5.
The abundance and distribution of transposable elements (TEs) in a representative part of the euchromatic genome of Drosophila melanogaster were studied by analyzing the sizes and locations of TEs of all known families in the genomic sequences of chromosomes 2R, X, and 4. TEs contribute to up to 2% of the sequenced DNA, which corresponds roughly to the euchromatin of these chromosomes. This estimate is lower than that previously available from in situ data and suggests that TEs accumulate in the heterochromatin more intensively than was previously thought. We have also found that TEs are not distributed at random in the chromosomes and that their abundance is more strongly associated with local recombination rates, rather than with gene density. The results are compatible with the ectopic exchange model, which proposes that selection against deleterious effects of chromosomal rearrangements is a major force opposing element spread in the genome of this species. Selection against insertional mutations also influences the observed patterns, such as an absence of insertions in coding regions. The results of the analyses are discussed in the light of recent findings on the distribution of TEs in other species.  相似文献   

6.
The "selfish DNA" theory postulates that transposable elements (TEs) are intragenomic parasites, and that natural selection against deleterious effects associated with their presence is the main force preventing their genomic spread in natural populations. In agreement with this model, TEs in Drosophila melanogaster populations are usually found at low frequencies in most genomic locations. Only a few cases of fixation of TE insertions have been reported, usually in regions of low recombination, where selection is expected to be less effective. Here, we report a population genetics study on the apparent fixation of an S-element in a highly recombining region in two natural populations of D. melanogaster. Three similar fragments of an S-element are inserted into the 5' regions of three members of a heat shock gene family, Hsp70 (Hsp70Aa and Hsp70Ab in polytene chromosome band 87A, and Hsp70Bb in 87C). A PCR-based analysis suggests that the insertions are fixed or at high frequencies in the entire species. A population survey of the levels of nucleotide sequence variation at the insertion site in 87C in two natural populations of D. melanogaster provided evidence for reduced levels of variation in the region, normal levels of recombination, and selection, reflected in a significant departure from neutrality of the variant frequency spectrum. This was particularly strong for the S-element inverted repeats (IRs) and suggests that these are of functional significance for the host.  相似文献   

7.
Duret L  Marais G  Biémont C 《Genetics》2000,156(4):1661-1669
We analyzed the distribution of transposable elements (TEs: transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of the nematode Caenorhabditis elegans. The density of transposons (DNA-based elements) along the chromosomes was found to be positively correlated with recombination rate, but this relationship was not observed for LTR or non-LTR retrotransposons (RNA-based elements). Gene (coding region) density is higher in regions of low recombination rate. However, the lower TE density in these regions is not due to the counterselection of TE insertions within exons since the same positive correlation between TE density and recombination rate was found in noncoding regions (both in introns and intergenic DNA). These data are not compatible with a global model of selection acting against TE insertions, for which an accumulation of elements in regions of reduced recombination is expected. We also found no evidence for a stronger selection against TE insertions on the X chromosome compared to the autosomes. The difference in distribution of the DNA and RNA-based elements along the chromosomes in relation to recombination rate can be explained by differences in the transposition processes.  相似文献   

8.
Endogenous retroviruses (ERVs) result from germ line infections by exogenous retroviruses. They can proliferate within the genome of their host species until they are either inactivated by mutation or removed by recombinational deletion. ERVs belong to a diverse group of mobile genetic elements collectively termed transposable elements (TEs). Numerous studies have attempted to elucidate the factors determining the genomic distribution and persistence of TEs. Here we show that, within humans, gene density and not recombination rate correlates with fixation of endogenous retroviruses, whereas the local recombination rate determines their persistence in a full-length state. Recombination does not appear to influence fixation either via the ectopic exchange model or by indirect models based on the efficacy of selection. We propose a model linking rates of meiotic recombination to the probability of recombinational deletion to explain the effect of recombination rate on persistence. Chromosomes 19 and Y are exceptions, possessing more elements than other regions, and we suggest this is due to low gene density and elevated rates of human ERV integration in males for chromosome Y and segmental duplication for chromosome 19.  相似文献   

9.
Dolgin ES  Charlesworth B 《Genetics》2006,174(2):817-827
Sexual reproduction and recombination are important for maintaining a stable copy number of transposable elements (TEs). In sexual populations, elements can be contained by purifying selection against host carriers with higher element copy numbers; however, in the absence of sex and recombination, asexual populations could be driven to extinction by an unchecked proliferation of TEs. Here we provide a theoretical framework for analyzing TE dynamics under asexual reproduction. Analytic results show that, in an infinite asexual population, an equilibrium in copy number is achieved if no element excision is possible, but that all TEs are eliminated if there is some excision. In a finite population, computer simulations demonstrate that small populations are driven to extinction by a Muller's ratchet-like process of element accumulation, but that large populations can be cured of vertically transmitted TEs, even with excision rates well below transposition rates. These results may have important consequences for newly arisen asexual lineages and may account for the lack of deleterious retrotransposons in the putatively ancient asexual bdelloid rotifers.  相似文献   

10.
Deceliere G  Charles S  Biémont C 《Genetics》2005,169(1):467-474
We analyzed the dynamics of transposable elements (TEs) according to Wright's island and continent-island models, assuming that selection tends to counter the deleterious effects of TEs. We showed that migration between host populations has no impact on either the existence or the stability of the TE copy number equilibrium points obtained in the absence of migration. However, if the migration rate is slower than the transposition rate or if selection is weak, then the TE copy numbers in all the populations can be expected to slowly become homogeneous, whereas a heterogeneous TE copy number distribution between populations is maintained if TEs are mobilized in some populations. The mean TE copy number is highly sensitive to the population size, but as a result of migration between populations, it decreases as the sum of the population sizes increases and tends to reach the same value in these populations. We have demonstrated the existence of repulsion between TE insertion sites, which is established by selection and amplified by drift. This repulsion is reduced as much as the migration rate is higher than the recombination rate between the TE insertion sites. Migration and demographic history are therefore strong forces in determining the dynamics of TEs within the genomes and the populations of a species.  相似文献   

11.
In regions of suppressed recombination, where selection is expected to be less efficient in removing slightly deleterious mutations, transposable element (TE) insertions should be more likely to drift to higher frequencies, and even to reach fixation. In the absence of excision events, once a TE is fixed it cannot be eliminated from the population, and accumulation of elements thus should become an irreversible process. In the long term, this can drive the degeneration of large non-recombining fractions of the genomes. Chromosome 4 of Drosophila melanogaster has very low levels of recombination, if any, and this could be causing its degeneration. Here we report the results of a PCR-based analysis of the population frequencies of TE insertions in a sample from three African natural populations. We investigated 27 insertions from 12 TE families, located in regions of either suppressed or free recombination. Our results suggest that TE insertions tend to be fixed in the non-recombining regions, particularly on the fourth chromosome. We have also found that this involves all types of elements, and that fixed insertions are significantly shorter and more divergent from the canonical sequence than those segregating in the sample (28.1% vs 86.3% of the canonical length, and average nucleotide divergence (D(XY)) = 0.082 vs 0.008, respectively). Finally, DNA-based elements seem to show a greater tendency to reach fixation than retrotransposons. Implications of these findings for the population dynamics of TEs, and the evolutionary forces that shape the patterns of genetic variation in regions of reduced recombination, are discussed.  相似文献   

12.
The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that—in addition to recombination rate—the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.  相似文献   

13.
Kim Y  Stephan W 《Genetics》2000,155(3):1415-1427
Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleterious mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral variation, using a three-locus model in which each locus is subjected to either deleterious, favorable, or neutral mutations. Average heterozygosity is measured by simulations (1) at the stationary state under the assumption of recurrent hitchhiking events and (2) as a transient level after a single hitchhiking event. The simulation results are compared to theoretical predictions. It is shown that known analytical solutions describing the hitchhiking effect without background selection can be modified such that they accurately predict the joint effects of hitchhiking and background on linked, neutral variation. Generalization of these results to a more appropriate multilocus model (such that background selection can occur at multiple sites) suggests that, in regions of very low recombination rates, stationary levels of nucleotide diversity are primarily determined by hitchhiking, whereas in regions of high recombination, background selection is the dominant force. The implications of these results on the identification and estimation of the relevant parameters of the model are discussed.  相似文献   

14.
We analysed the distribution of transposable elements (TEs) in 100 aligned pairs of orthologous intergenic regions from the mouse and human genomes. Within these regions, conserved segments of high similarity between the two species alternate with segments of low similarity. Identifiable TEs comprise 40-60% of segments of low similarity. Within such segments, a particular copy of a TE found in one species has no orthologue in the other. Overall, TEs comprise only approximately 20 % of conserved segments. However, TEs from two families, MIR and L2, are rather common within conserved segments. Statistical analysis of the distributions of TEs suggests that a majority of the MIR and L2 elements present in murine intergenic regions have human orthologues. These elements must have been present in the common ancestor of human and mouse and have remained under substantial negative selection that prevented their divergence beyond recognition. If so, recruitment of MIR- and L2-derived sequences to perform a function that increases host fitness is rather common, with at least two such events per host gene. The central part of the MIR consensus sequence is over-represented in conserved segments given its background frequency in the genome, suggesting that it is under the strongest selective constraint.  相似文献   

15.
The Drosophila melanogaster genome contains approximately 100 distinct families of transposable elements (TEs). In the euchromatic part of the genome, each family is present in a small number of copies (5-150 copies), with individual copies of TEs often present at very low frequencies in populations. This pattern is likely to reflect a balance between the inflow of TEs by transposition and the removal of TEs by natural selection. The nature of natural selection acting against TEs remains controversial. We provide evidence that selection against chromosome abnormalities caused by ectopic recombination limits the spread of some TEs. We also demonstrate for the first time that some TE families in the Drosophila euchromatin appear to be only marginally affected by purifying selection and contain many copies at high population frequencies. We argue that TEs in these families attain high population frequencies and even reach fixation as a result of low family-wide transposition rates leading to low TE copy numbers and consequently reduced strength of selection acting on individual TE copies. Fixation of TEs in these families should provide an upward pressure on the size of intergenic sequences counterbalancing rapid DNA loss through small deletions. Copy-number-dependent selection on TE families caused by ectopic recombination may also promote diversity among TEs in the Drosophila genome.  相似文献   

16.
Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally‐inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole‐genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S‐locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold‐responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.  相似文献   

17.
Comparative analysis of recently sequenced eukaryotic genomes has uncovered extensive variation in transposable element (TE) abundance, diversity, and distribution. The TE profile in the sequenced pufferfish genomes is more similar to that of Drosophila melanogaster than to human or mouse, in that pufferfish TEs exhibit low overall abundance, high family diversity, and localization in the heterochromatin. It has been suggested that selection against the deleterious effects of ectopic recombination between TEs has structured the TE profile in Drosophila and pufferfish but not in humans. We test this hypothesis by measuring the sample frequency of 48 euchromatic TE insertions in the genome of the green spotted pufferfish (Tetraodon nigroviridis). We estimate the strength of selection acting on recent insertions by analyzing the site frequency spectrum using a maximum-likelihood approach. We show that in contrast to Drosophila, euchromatic TE insertions in Tetraodon are selectively neutral and that the low copy number and compartmentalized distribution of TEs in the Tetraodon genome must be caused by regulation by means other than purifying selection acting on recent insertions. Inference of regulatory processes governing TE profiles should take into account factors such as effective population size, incidence of inbreeding/outcrossing, and other species-specific traits.  相似文献   

18.
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats.  相似文献   

19.
The stable coexistence of transposable elements (TEs) with their host genome over long periods of time suggests TEs have to impose some deleterious effect upon their host fitness. Three mechanisms have been proposed to account for the deleterious effect caused by TEs: host gene interruptions by TE insertions, chromosomal rearrangements by TE-induced ectopic recombination, and costly TE expression. However, the relative importance of these mechanisms remains controversial. Here, we test specifically if TE expression accounts for the host fitness cost imposed by TE insertions. In the retrotransposon Doc, expression requires binding of the host RNA polymerase to the internal promoter. If expression of Doc elements is deleterious to their host, Doc copies with promoters would be more strongly selected against and would persist in the population for shorter periods of time compared with Docs lacking promoters. We tested this prediction using sequence-specific amplified polymorphism (SSAP) analyses. We compared the populations of these two types of Doc elements in two sets of lines of Drosophila melanogaster: selection-free isogenic lines accumulating new Doc insertions and isogenized isofemale lines sampled from a natural population. We found that (1) there is no difference in the proportion of promoter-bearing and promoter-lacking copies between sets of lines, and (2) the site occupancy distribution of promoter-bearing copies does not skew toward lower frequency compared with that of promoter-lacking copies. Thus, selection against promoter-bearing copies does not appear to be stronger than that of promoter-lacking copies. Our results show that expression is not playing a major role in stabilizing Doc copy numbers.  相似文献   

20.
The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet important, element for the evolutionary dynamics of TEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号