首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to evaluate the need for using scale acidification to remove carbonates prior to stable isotope analysis, we compared acidified and non-acidified scales of six freshwater fish species (perch, roach, rudd, pike, tench and bream) with contrasting mineral content in their scales. Fish samples were taken from six lakes with variable trophic conditions, ranging from oligotrophic to hypertrophic, and differing in CO2 concentrations. The scale mineral content of the six species studied ranged between 31.8 and 61.3% dry weight (DW) in tench and perch, respectively. The elemental composition was characterised by high amounts of phosphorus, varying from 4.5 to 9.1% DW. The mineral fraction was dominated by apatite (range 24.4–49.2% DW), carbonates constituted a very small proportion of the total carbon content (average ± SD: 5.5 ± 1.7%). The average effect of acidification was very small for all species (average ± SD: 0.181 ± 0.122 and −0.208 ± 0.243 for carbon and nitrogen, respectively), albeit significant for five out of the six species (excepting tench that had the lowest mineral content). Linear regression slopes between acidified and untreated scales did not differ significantly from one for almost all the species and isotopes. The effects of acidification on the two isotopes were correlated with the relative carbonate content as well as with the CO2 concentration for carbon and total phosphorus for nitrogen. We conclude that the need for scale acidification depends on the different species and on the system studied, although in most cases the acidification effect will be biologically irrelevant. However, dual analysis of acidified and untreated scales may provide useful information on differences in stable isotope composition of dissolved inorganic carbon and on phytoplankton carbon fractionation generated by varying levels of CO2 availability.  相似文献   

2.
The structures and stabilities of eleven N13 + and N13 isomers have been investigated with second-order Møller–Plesset (MP2) and density functional theory (DFT) methods. Five N13 + isomers and six N13 isomers are all reasonable local minima on their potential energy hypersurfaces. The most stable N13 + cation is structure C-2 with C2v symmetry, which contains a pentazole ring and two N4 open chains. It is different from those of the N7 + and N9 + clusters, but similar to the N11 + cluster. Meanwhile, the most stable N13 structure A-2 is composed of a pentazole ring and a six-membered ring connected by two nitrogen atoms. It is not only different from those of the N7 and N9 clusters, but also from the N11 cluster. The decomposition pathways of structures C-2 and A-2 were investigated at the B3LYP/(aug)-cc-pVDZ level. From the barrier heights of the structures C-2 and A-2 decomposition processes, it is suggested that C-2 is difficult to observe experimentally and A-2 may be observed as a short-lived species. Figure Optimized geometrical parameters of N13 + isomer C-2   相似文献   

3.
Seasonal oscillations in the carbon (δ13C) and nitrogen (δ15N) isotope signatures of aquatic algae can cause seasonal enrichment–depletion cycles in the isotopic composition of planktonic invertebrates (e.g., copepods). Yet, there is growing evidence that seasonal enrichment–depletion cycles also occur in the isotope signatures of larger invertebrate consumers, taxa used to define reference points in isotope-based trophic models (e.g., trophic baselines). To evaluate the general assumption of temporal stability in non-zooplankton aquatic invertebrates, δ13C and δ15N time series data from the literature were analyzed for seasonality and the influence of biotic (feeding group) and abiotic (trophic state, climate regime) factors on isotope temporal patterns. The amplitude of δ13C and δ15N enrichment–depletion cycles was negatively related to body size, although all size-classes of invertebrates displayed a winter-to-summer enrichment in δ13C and depletion in δ15N. Among feeding groups, periphytic grazers were more variable and displayed larger temporal changes in δ13C than detritivores. For nitrogen, temporal variability and magnitude of directional change of δ15N was most strongly related to ecosystem trophic state (eutrophic > mesotrophic, oligotrophic). This study provides evidence of seasonality in the isotopic composition of aquatic invertebrates across very broad geographical and ecological gradients as well as identifying factors that are likely to modulate the strength and variability of seasonality. These results emphasize the need for researchers to recognize the likelihood of temporal changes in non-zooplankton aquatic invertebrate consumers at time scales relevant to seasonal studies and, if present, to account for temporal dynamics in isotope trophic models.  相似文献   

4.
Ying Wu  Bing Wang  Dima Chen 《Plant and Soil》2018,431(1-2):107-117

Background and aims

Nitrogen (N) deficiency and drought are two key limiting factors for rice production worldwide, but the relationship of drought stress with N homeostasis in rice is rarely advanced. The aim of this study was to dissect the physiological effects of drought stress on rice growth that coupled unbalanced N metabolism.

Results

Water-deficient stress (WD) limited stomatal aperture function and activity of Rubisco carboxylase to photosynthesis. The rate of total electron transport (Jt) and the electron to carboxylation (Jc) were considerably decreased, whereas the proportion of e? flow to photorespiration was stimulated by WD, especially at 1600 μmol m?2 s?1 PPFD. Concurrently, the expressions of glycolate oxidase genes (GOX1, GOX5) and glycine decarboxylase complex (GDCH, GDCP and GDCT) were significantly induced in leaves of WD treatment, which led to the accumulation of reactive oxygen species in leaves. With the photosynthetic change, nitrate uptake and reduction were suppressed. Moreover, the enhanced photorespiration generated excess NH3 accumulation in leaves and stimulated the expressions of GS1;1, GS1;2 and GS2, which were tightly coupled with the expressions of PEPC1 and PEPC2 under WD stress.

Conclusions

Our results suggest that the inhibited nitrate reduction associated with diminished electron transport rate, and the photorespiration-associated accumulation of hydrogen peroxide and NH3 were critical in the drought-induced rice growth inhibition.
  相似文献   

5.
We measured seasonal and interannual variations in delta(13)C values within the carbon reservoirs (leaves and soil) and CO(2) fluxes (soil and ecosystem respired CO(2)) of an old growth coniferous forest in the Pacific Northwest USA with relation to local meteorological conditions. There were significant intra-annual and interannual differences in the carbon isotope ratios of CO(2) respired at both the ecosystem (delta(13)C(R)) and the soil levels (delta(13)C(R-soil)), but only limited variations in the carbon isotope ratios of carbon stocks. The delta(13)C(R) values varied by as much as 4.4 per thousand over a growing season, while delta(13)C(R-soil )values changed as much as 6.2 per thousand. The delta(13)C of soil organic carbon (delta(13)C(SOC)) and needle organic carbon (delta(13)C(P)) exhibited little or no significant changes over the course of this study. Carbon isotope discrimination within leaves (Delta(p)) showed systematic decreases with increased canopy height, but remained fairly constant throughout the year (Delta(p)=17.9 per thousand -19.2 per thousand at the top of the canopy, Delta(p)=19.6 per thousand -20.9 per thousand at mid-canopy, Delta(p)=23.3 per thousand -25.1 per thousand at the canopy base). The temporal variation in the delta(13)C of soil and ecosystem respired CO(2) was correlated ( r=0.93, P<0.001) with soil moisture levels, with dry summer months having the most (13)C-enriched values. The dynamic seasonal changes in delta(13)C of respired CO(2) are hypothesized to be the result of fast cycling of recently fixed carbon back to the atmosphere. One scaling consequence of the seasonal and interannual variations in delta(13)C(R) is that inversion-based carbon-cycle models dependent on observed atmospheric CO(2) concentration and isotope values may be improved by incorporating dynamic delta(13)C(R) values to interpret regional carbon sink strength.  相似文献   

6.
7.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

8.
Adams HD  Kolb TE 《Oecologia》2004,140(2):217-225
We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and 13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf 13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.  相似文献   

9.
Because nitrogen and phosphorus are primary resources for plant, algal, and microbial production, increases in nutrient inputs can markedly alter aquatic ecosystems. Coastal wetland plots at Belle W. Baruch Marine Field Laboratory (South Carolina, USA) have been amended with nitrogen and phosphorus for ~20 years to determine the effects of nutrient loading on coastal wetlands. We conducted a survey of δ15N and δ13C natural abundance in coastal wetland organic pools (sediment, vegetation) with long-term nutrient amendments (control, no addition; nitrogen; phosphorus; and nitrogen + phosphorus additions). Additionally, we conducted laboratory assays to quantify pore water nutrient availability and nitrification rates. Marsh vegetation (Spartina alterniflora) had enriched δ13C values (mean −14‰) relative to bulk sediment samples (mean −18‰). Nitrogen-amended plots (alone and in combination with phosphorus) had enriched δ13C values in the surface sediment (0–5 cm; mean −16.1‰) relative to control (mean −16.5‰) and phosphorus-amended plots (mean −16.8‰). Nitrogen-amended plots also had depleted δ15N in S. alterniflora leaf tissues (−3.3‰) and surface sediment samples (mean 2.1‰) relative to leaf tissues (mean 2.1‰) or sediment samples (mean 5.8‰) from control or phosphorus-only amended plots. Nitrate availability (as increased pore water concentration) was higher in N-amended plots although ammonium availability did not differ. Phosphorus availability was higher only in phosphorus-only amended plots. Overall, we found that long-term nutrient amendments to coastal wetlands significantly altered nutrient availability and uptake rates as well as natural abundance of δ13C and δ15N in multiple organic matter sources.  相似文献   

10.
While the use of 1H–13C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D 1H–13C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra.  相似文献   

11.
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked substrates. Stimulation likely depends on Nitric Oxide ( . NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP or high GSNO (10 mM plus DTE to increases its . NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a . NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of . NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection.  相似文献   

12.
We present a comprehensive dataset of hourly, daily, and monthly measurements of carbon isotope measurements of CO2 in canopy air from a temperate deciduous forest with the aim to identify the relevance of short-term variations in the isotopic signature of ecosystem respiration (13CR) and to understand its underlying physiological processes. We show that during daytime low vertical mixing inside the canopy can lead to decoupling of the air in the lower and upper canopy layer resulting in large spatial variation of 13C in CO2 of canopy air. Intercept of Keeling Plots also showed large temporal variation (3.8) over the course of the day demonstrating that intercepts can differ between day and night and suggesting that choosing the right time for sampling is essential to capture the isotopic signature of ecosystem respiration (13CR). 13CR as obtained from night-time measurements showed large variation of up to 2.65 on a day-to-day basis, which was similar to the observed variation of 13CR over the seasonal cycle (3.08). This highlights the importance of short-term physiological processes within ecosystems for the isotopic composition of CO2 in the atmosphere, not reflected by bulk plant and soil organic samples. At daily and monthly time scales, 13CR increased with increasing ratio of vapour pressure deficit to photosynthetically active radiation, measured 4–5 days before. This suggests that ecosystem respiration was isotopically linked to assimilation. Furthermore, assimilates recently fixed in the canopy seem to form a labile carbon pool with a short mean residence time that is respired back to the atmosphere after 4–5 days.  相似文献   

13.
The dissolved CO 2 concentration of stream waters is an important component of the terrestrial carbon cycle and an important pathway for release of CO2 to the atmosphere. This study uses data from the UK's largest groundwater monitoring network to estimate the importance of groundwater in contributing excess dissolved CO2 to the atmosphere. The study shows that:
(i)  the arithmetic mean concentration of excess dissolved CO2 in the groundwater was 4.99 mg C/I with a standard deviation of 2.53
(ii)  for the groundwater composition of excess dissolved CO2 analysis shows no statistical difference between years but does show a significant intra-annual effect and a significant difference between aquifers
(iii)  A weighted average of the estimate the areal export of excess dissolved CO2 from the groundwater of the catchment is between 1.4 and 2.9 t C/km2
(iv)  the flux of excess dissolved CO2 at the catchment outlet over the period between 1975 and 2002 averages 1.79 kt  C/year.
If this were replicated across the UK then the flux of CO2 from rivers would be 0.65 Mt C/year.  相似文献   

14.
Matthews B  Mazumder A 《Oecologia》2004,140(2):361-371
Individual variation in the diet of consumers is common in many ecological systems and has important implications for the study of population dynamics, animal behavior, and evolutionary or ecological interactions. Ecologists frequently quantify the niche of a population by intensive analyses of gut contents and feeding behaviors of consumers. Inter-individual differences in 13C signature can indicate long term differences in feeding behavior, often unattainable by a single snapshot analysis of gut contents. If a consumers food sources have unique 13C signatures, then the intrapopulation variation in 13C may be useful for quantifying diet variation and detecting isotopic evidence of individual specialization. However, intrapopulation variation in 13C can underestimate or overestimate dietary variation, and therefore is not directly equivalent to a dietary based niche. In this paper we show that intrapopulation variability of 13C in consumers critically depends on the isotopic range and distribution of food sources. Our analyses fundamentally challenge how we interpret the intrapopulation isotopic variance of 13C, and how we evaluate isotopic evidence of individual specialization.  相似文献   

15.
Stream food web function is often assessed using carbon stable isotope assessments of the relative contribution of autochthonous and allochthonous sources of organic matter to consumer diets. As a result, variability in source signatures can strongly influence the assessment of carbon flows. To examine the implications of temporal source variability on food web interpretations, benthic algal δ13C signatures were measured over 8 weeks in five streams in subtropical Queensland, Australia. All food webs were largely driven by benthic algal carbon; however, substantial week-to-week variation in benthic algal δ13C signatures modified the calculated contributions of algae to consumer diets, with differences in autochthonous contributions of up to 11% between weeks. In addition, variable algal signatures led to many occasions in which the δ13C signatures of some consumers was beyond the range of available sources, meaning the mixing model analyses did not have a valid solution. Together, these findings suggest that temporal variability in algal δ13C signatures can strongly influence the interpretation of carbon flows in stream food webs. Future food web studies should assess the temporal variability of sources prior to sampling consumers, in order to characterise end member signatures and their relevance to consumers at the time of collection.  相似文献   

16.
Small lakes in northern latitudes represent a significant source of CH4 to the atmosphere that is predicted to increase with warming in the Arctic. Yet, whole-lake CH4 budgets are lacking as are measurements of δ13C-CH4 and δ2H-CH4. In this study, we quantify spatial variability of diffusive and ebullitive fluxes of CH4 and corresponding δ13C-CH4 and δ2H-CH4 in a small, Arctic lake system with fringing wetland in southwestern Greenland during summer. Net CH4 flux was highly variable, ranging from an average flux of 7 mg CH4 m?2 d?1 in the deep-water zone to 154 mg CH4 m?2 d?1 along the lake margin. Diffusive flux accounted for ~8.5 % of mean net CH4 flux, with plant-mediated and ebullitive flux accounting for the balance of the total net flux. Methane content of emitted ebullition was low (mean ± SD 10 ± 17 %) compared to previous studies from boreal lakes and wetlands. Isotopic composition of net CH4 emissions varied widely throughout the system, with δ13C-CH4 ranging from ?66.2 to ?55.5 ‰, and δ2H-CH4 ranging from ?345 to ?258 ‰. Carbon isotope composition of CH4 in ebullitive flux showed wider variation compared to net flux, ranging from ?69.2 to ?49.2 ‰. Dissolved CH4 concentrations were highest in the sediment and decreased up the water column. Higher concentrations of CH4 in the hypoxic deep water coincided with decreasing dissolved O2 concentrations, while methanotrophic oxidation dominated in the epilimnion based upon decreasing concentrations and increasing values of δ13C-CH4 and δ2H-CH4. The most depleted 13C- and 2H-isotopic values were observed in profundal bottom waters and in subsurface profundal sediments. Based upon paired δ13C and δ2H observations of CH4, acetate fermentation was likely the dominant production pathway throughout the system. However, isotopic ratios of CH4 in deeper sediments were consistent with mixing/transition between CH4 production pathways, indicating a higher contribution of the CO2 reduction pathway. The large spatial variability in fluxes of CH4 and in isotopic composition of CH4 throughout a single lake system indicates that the underlying mechanisms controlling CH4 cycling (production, consumption and transport) are spatially heterogeneous. Net flux along the lake margin dominated whole-lake flux, suggesting the nearshore littoral area dominates CH4 emissions in these systems. Future studies of whole-lake CH4 budgets should consider this significant spatial heterogeneity.  相似文献   

17.
In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600 m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3 than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3 in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3 leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N ratio.  相似文献   

18.
The effect of iron deficiency on photosynthetic electron transport in Photosystem II (PS II) was studied in leaves and thylakoid membranes of lettuce (Lactuca sativa, Romaine variety) plants. PS II electron transport was characterized by oxygen evolution and chlorophyll fluorescence parameters. Iron deficiency in the culture medium was shown to affect water oxidation and the advancement of the S-states. A decrease of maximal quantum yield of PS II and an increase of fluorescence intensity at step J and I of OJIP kinetics were also observed. Thermoluminescence measurements revealed that charge recombination between the quinone acceptor of PS II, QB, and the S2 state of the Mn-cluster was strongly perturbed. Also the dark decay of Chl fluorescence after a single turnover white flash was greatly retarded indicating a slower rate of QA reoxidation.  相似文献   

19.
An experiment is presented to determine 3JHNHα coupling constants, with significant advantages for applications to unfolded proteins. The determination of coupling constants for the peptide chain using 1D 1H, or 2D and 3D 1H-15N correlation spectroscopy is often hampered by extensive resonance overlap when dealing with flexible, disordered proteins. In the experiment detailed here, the overlap problem is largely circumvented by recording 1H-13C′ correlation spectra, which demonstrate superior resolution for unfolded proteins. J-coupling constants are extracted from the peak intensities in a pair of 2D spin-echo difference experiments, affording rapid acquisition of the coupling data. In an application to the cytoplasmic domain of human neuroligin-3 (hNlg3cyt) data were obtained for 78 residues, compared to 54 coupling constants obtained from a 3D HNHA experiment. The coupling constants suggest that hNlg3cyt is intrinsically disordered, with little propensity for structure.  相似文献   

20.
Stable isotopes of carbon (δ13C) and nitrogen (δ15N) often have unique values among lake habitats (e.g. benthic, littoral, pelagic), providing a widely used tool for measuring the structure and energy flow in aquatic food webs. However, there has been little recognition of the spatial and temporal variabilities of these isotopes within habitats of aquatic ecosystems. To address this, δ13C and δ15N were measured in seston, zebra mussels (Dreissena polymorpha) and young-of-year (YOY) yellow (Perca flavescens), and white perch (Morone americana) collected from four sites across the offshore habitat of the western basin of Lake Erie during June–September 2009. Values of δ13C and δ15N showed significant spatial and temporal variations, with month accounting for >50% of the variation, for both stable isotopes and all the species except seston. Such variation in isotope values has the potential to significantly influence or confound interpretation of stable isotopes in measures, such as trophic position (TP) which use lower trophic level organisms as their baseline. For example, TP was found to vary up to 0.7 for yellow and white perch (TP = δ15Nfish − δ15Nzebra mussel/diet-tissue fractionation factor) depending on the zebra mussel data used (e.g., from a different location or a different collection month). As the use of stable isotopes continues to move from qualitative to more quantitative measures of trophic structure, food web research must recognize the importance of stable isotopes' variability in lower trophic level organisms, especially in large lake systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号