首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphoenolpyruvate (PEP) carboxykinases harbor two divalent metal-binding sites. One cation interacts with the enzyme (metal binding site 1) to elicit activation, while a second cation (metal binding site 2) interacts with the nucleotide to serve as the metal nucleotide substrate. Mutants of Anaerobiospirillum succiniciproducens PEP carboxykinase have been constructed where Thr249 and Asp262, two residues of metal binding site 2 of the enzyme, were altered. Binding of the 3'(2')-O-(N-methylantraniloyl) derivative of ADP provides a test of the structural integrity of these mutants. The conservative mutation (Asp262Glu) retains a significant proportion of the wild type enzymatic activity. Meanwhile, removal of the OH group of Thr249 in the Thr249Ala mutant causes a decrease in V(max) by a factor of 1.1 x 10(4). Molecular modeling of wild type and mutant enzymes suggests that the lower catalytic efficiency of the Thr249Ala enzyme could be explained by a movement of the lateral chain of Lys248, a critical catalytic residue, away from the reaction center.  相似文献   

2.
Anaerobiospirillum succiniciproducens His225Gln, Asp262Asn, Asp263Asn, and Thr249Asn phosphoenolpyruvate carboxykinases were analyzed for their oxaloacetate decarboxylase, and pyruvate kinase–like activities. The His225Gln and Asp263Asn enzymes showed increased K m values for Mn2+ and PEP compared with the native enzyme, suggesting a role of His225 and Asp263 in Mn2+ and PEP binding. No mayor alterations in K m values for oxaloacetate were detected for the varied enzymes. Alterations of His225, Asp262, Asp263, or Thr249, however, did not affect the V max of the secondary activities as much as they affected the V max for the main reaction. The results presented in this communication suggest different rate-limiting steps for the primary reaction and the secondary activities.  相似文献   

3.
Two members of the ATP-dependent class of phosphoenolpyruvate carboxykinases (PEPCKs) (Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens) have been comparatively studied with regard to their oxaloacetate (OAA) decarboxylase and pyruvate kinase-like activities. The pyruvate kinase-like activities were dependent on the presence of Mn2+; at the same concentrations Mg2+ was not effective. These activities were synergistically activated by a combination of both metal ions. V max for these activities in A. succiniciproducens and S. cerevisiae PEPCKs was 0.13% and 1.2% that of the principal reaction, respectively. The OAA decarboxylase activity was nucleotide independent and, with decreasing order of effectiveness, these activities were supported by Mn2+ and Mg2+. AMP is an activator of these reactions. V max for the OAA decarboxylase activities in A. succiniciproducens and S. cerevisiae PEPCKs was 4% and 0.2% that of the PEP-forming reaction, respectively.  相似文献   

4.
Anaerobiospirillum succiniciproducens grew on a minimal salts medium containing wood hydrolysate (equivalent to 27 g glucose l–1) and, when supplemented with 10 g corn steep liquor l–1 as a complex nitrogen source, succinic acid at 24 g l–1 was obtained (yield = 88% w/w glucose). This may therefore be an economical method to produce succinic acid.  相似文献   

5.
ApckA gene encoding phosphoenolpyruvate carboxykinase (PEPCK) was cloned and sequenced from the succinic acid producing bacteriumMannheimia succiniciproducens MBEL55E. The gene encoded a 538 residue polypeptide with a calculated molecular mass of 58.8 kDa and a calculated pI of 5.03. The deduced amino acid sequence of theM. succiniciproducens MBEL55E PEPCK was similar to those of all known ATP-dependent PEPCKs.  相似文献   

6.
The kinetic affinity for CO2 of phosphoenolpyruvate PEP5 carboxykinase from Anaerobiospirillum succiniciproducens, an obligate anaerobe which PEP carboxykinase catalyzes the carboxylation of PEP in one of the final steps of succinate production from glucose, is compared with that of the PEP carboxykinase from Saccharomyces cerevisiae, which catalyzes the decarboxylation of oxaloacetate in one of the first steps in the biosynthesis of glucose. For the A. succiniciproducens enzyme, at physiological concentrations of Mn2+ and Mg2+, the affinity for CO2 increases as the ATP/ADP ratio is increased in the assay medium, while the opposite effect is seen for the S. cerevisiae enzyme. The results show that a high ATP/ADP ratio favors CO2 fixation by the PEP carboxykinase from A. succiniciproducens but not for the S. cerevisiae enzyme. These findings are in agreement with the proposed physiological roles of S. cerevisiae and A. succiniciproducens PEP carboxykinases, and expand recent observations performed with the enzyme isolated from Panicum maximum (Chen et al. (2002) Plant Physiology 128: 160–164).  相似文献   

7.
Anaerobiospirillum succiniciproducens requires expensive complex nitrogen sources such as yeast extract and polypeptone for its growth and succinic acid production. It was found thatA. succiniciproducens was able to grow in a minimal medium containing glucose when supplemented with corn steep liquor (CSL) as the sole complex nitrogen source. The concentration of CSL had a significant effect on the glucose consumption byA. succiniciproducens. When 10–15 g/L of CSL was supplemented, cells were grown to an OD660 of 3.5 and produced 17.8 g/L succinic acid with 20 g/L glucose. These results are similar to those obtained by supplementing yeast extract and polypeptone, thereby suggesting that succinic acid can be produced more economically using glucose and CSL.  相似文献   

8.
The possibilities of independent function of the two chaperonin 10 (cpn10) domains of the cpn10 homologue from spinach chloroplasts and the role of five conserved amino acid residues in the N-terminal cpn10 unit were investigated. Recombinant single domain proteins and complete chloroplast cpn10 proteins carrying amino acid exchanges of conserved residues in their N-terminal cpn10 domain were expressed in Escherichia coli and partially purified. The function of the recombinant proteins was tested using GroEL as chaperonin 60 (cpn60) partner for in vitro refolding of denatured ribulose-1,5-bisphosphate carboxylase (Rubisco). Interaction with cpn60 was also monitored by the ability to inhibit GroEL ATPase activity. In vitro both isolated cpn10 domains were found to be incapable of co-chaperonin function. All mutants were also severely impaired in cpn10 function. The results are interpreted in terms of an essential role of the exchanged amino acid residues for the interaction between co-chaperonin and cpn60 partner and in terms of a functional coupling of both cpn10 domains.To test the function of mutant chloroplast cpn10 proteins in vivo the cpn10 deficiency of E. coli strain CG712 resulting in an inability to assemble -phage was exploited in a complementation assay. Transformation with plasmids directing the expression of mutant chloroplast cpn10 proteins in two cases restored -phage assembly in this bacterial strain to the same extent as did transformation with a plasmid encoding wild-type cpn10 protein. In contrast a plasmid encoded third mutant and truncated forms of chloroplast cpn 10 showed significantly reduced complementation efficiencies.  相似文献   

9.
Cysteine-319 belongs to the flexible flap at the active site of Proteus vulgaris urease. Replacing this cysteine by threonine resulted in a 20-fold increase of specific activity. Temperature stability increased, susceptibility to inhibition by dipyridyl disulfide decreased, and pH optimum shifted from 8 to 6.9. K m (35 to 12 mM) and Vmax (47.4 to 1.8 mol min–1) were substancially altered. Both variants of the enzyme were irreversibly inhibited by phenylmethanesulfonyl fluoride.  相似文献   

10.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We previously discovered that the budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene that confers resistance to the proline analogue azetidine-2-carboxylate (AZC). The MPR1-encoded protein (Mpr1) is an N-acetyltransferase that detoxifies AZC and is a novel member of the GCN5-related N-acetyltransferase (GNAT) superfamily. Mpr1 can reduce intracellular oxidation levels and protect yeast cells from oxidative stress, heat shock, freezing, or ethanol treatment. Here, we analyzed the amino acid residues in Mpr1 involved in substrate binding and catalysis by site-directed mutagenesis. The mutated genes were expressed in Escherichia coli, and the recombinant Strep-tagged fusion proteins were analyzed in terms of AZC resistance and acetyltransferase activity. The replacement of Arg145, which is conserved in the GNAT superfamily, by Ala, Asp, Glu, Gly, or Trp led to a growth defect of transformants grown in the presence of AZC. Kinetic studies demonstrated that these mutations caused a large reduction in the affinity for AZC and acetyl-CoA, suggesting that Arg145 interacts with both substrates. Among seven conserved Tyr residues, one of which may be a catalytic residue in the GNAT superfamily, Tyr166Ala- showed no detectable activity and Tyr166Phe-Mpr1, a remarkable decrease of the k(cat)/K(m) value. This result suggests that Tyr166 is critical for the catalysis.  相似文献   

12.
Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation.  相似文献   

13.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

14.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

15.
Phosphoenolpyruvate carboxykinase showed high activity in Saccharomyces cerevisiae grown on gluconeogenic carbon sources. Addition of glucose to such cultures caused a rapid loss of the phosphoenolpyruvate carboxykinase activity. Fructose or mannose had the same effect as glucose, while 2-deoxyglucose or galactose were without effect. The inactivation was an irreversible process, since the regain of the activity was dependent of de novo protein synthesis. Cycloheximide did not prevent inactivation. All strains of the genus Saccharomyces tested showed inactivation of their phosphoenolpyruvate carboxykinase upon addition of glucose; this behaviour was not restricted to this genus.Non-Standard Abbreviations FbPase fructose bisphosphatase [EC 3.1.3.11 fructose-1,6-bisphosphate hydrolase] - PEPCK phosphoenolpyruvate carboxykinase [EC 4.1.49 ATP: oxalacetate carboxylase (transphosphorylating)] - YPE yeast-peptone-ethanol A preliminary account of these results was presented at the Fourth International Symposium on Yeasts, Vienna, Austria, July 1974  相似文献   

16.
台湾家白蚁内切葡聚糖酶活性中心氨基酸的饱和突变   总被引:1,自引:0,他引:1  
对内切葡聚糖酶的功能改进一直是纤维素酶研究领域的焦点。本研究对台湾家白蚁内切葡聚糖酶(CfEG)的活性位点做了饱和突变。首先,以PDB数据库中高山象白蚁内切葡聚糖酶(NtEG)的三维结构(PDB id=1ks8)为模板,对CfEG进行三维结构同源建模,二者序列一致性高达79%。位于CfEG活性中心的D53、D56、E411,分别与NtEG的催化残基D54、D57、E412重合。用简并引物对CfEG的假定活性位点D53、D56、E411进行定点饱和突变。在位点D53、D56各筛选到羧甲基纤维素酶活有一定提高的突变子D53E、D56C,其中D56C的Km值减小为原始酶的三分之一。双突变子D53L/D56I的比活比原始酶提高了近2倍,同时Km值减小至原始酶的一半。而E411的饱和突变子库均没有活性,进一步将其替换为近似氨基酸的E411D、E411Q定点突变子也丧失了酶活。由突变结果可推断,位点E411为该酶行使功能的必需残基。  相似文献   

17.
To evaluate their role in the active site of the MurG enzyme from Escherichia coli, 13 residues conserved in the sequences of 73 MurG orthologues were submitted to site-directed mutagenesis. All these residues lay within, or close to, the active site of MurG as defined by its tridimensional structure [Ha et al., Prot. Sci. 9 (2000) 1045-1052, and Hu et al., Proc. Natl. Acad. Sci. USA 100 (2003) 845-849]. Thirteen mutants proteins, in which residues T15, H18, Y105, H124, E125, N127, N134, S191, N198, R260, E268, Q288 or N291 have been replaced by alanine, were obtained as the C-terminal His-tagged forms. The effects of the mutations on the activity were checked: (i) by functional complementation of an E. coli murG mutant strain by the mutated genes; and (ii) by the determination of the steady-state kinetic parameters of the purified proteins. Most mutations resulted in an important loss of activity and, in the case of N134A, in the production of a highly unstable protein. The results correlated with the assigned or putative functions of the residues based on the tridimensional structure.  相似文献   

18.
Mutant Arg76Gln and Lys290Gln Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases have been prepared and analyzed. No alteration in the apparent kinetic constants were detected for the Arg76Gln mutant enzyme, while the Lys290Gln mutant showed a 12-fold decrease in V max/K mADP. These results indicate that Arg76 is not involved in CO2 binding, but support the hypothesis that the binding of this substrate induces a conformational change that protects the region around Arg76 from trypsin action [Herrera et al. (1993) J. Protein Chem. 12, 413–418]. These findings also indicate that Lys290, a highly reactive residue against pyrydoxal phosphate [Bazaes et al. (1995), FEBS Lett. 360, 207–210], does not perform an essential function for the enzyme activity.  相似文献   

19.
Phosphoenolpyruvate carboxykinase (PEPCK) is present in ripening tomato fruits. A cDNA encoding PEPCK was identified from a PCR-based screen of a cDNA library from ripe tomato fruit. The sequence of the tomato PEPCK cDNA and a cloned portion of the genomic DNA shows that the complete cDNA sequence contains an open reading frame encoding a peptide of 662 amino acid residues in length and predicts a polypeptide with a molecular mass of 73.5 kDa, which corresponds to that detected by western blotting. Only one PEPCK gene was identified in the tomato genome. PEPCK is shown to be present in the pericarp of ripening tomato fruits by activity measurements, western blotting and mRNA analysis. PEPCK abundance and activity both increased during fruit ripening, from an undetectable amount in immature green fruit to a high amount in ripening fruit. PEPCK mRNA, protein and activity were also detected in germinating seeds and, in lower amounts, in roots and stems of tomato. The possible role of PEPCK in the pericarp of tomato fruit during ripening is discussed.  相似文献   

20.
生淀粉糖化酶催化位点氨基酸及酶合成调控的初步研究   总被引:1,自引:0,他引:1  
通过对Rhizopus OR-1UVN菌种所产生淀粉糖化酶在不同底物不同缓冲溶液条件下酶最适pH的测定,推测出该生淀粉糖化酶活力中心催化位点氨基酸是天冬氨酸(Asp)和谷氨酸(Glu)。实验证明5~50mg/mL浓度葡萄糖对生淀粉糖化酶没有抑制作用。分别以浓度<5mg/mL葡萄糖和淀粉为碳源的培养基进行不同碳源发酵实验,发现以淀粉为碳源的培养基Ⅰ发酵15h开始产生淀粉糖化酶,以葡萄糖为碳源的培养基Ⅱ发酵35h开始产酶(葡萄糖浓度<8mg/mL),而且前者菌体较后者少,由此可知葡萄糖对产酶有阻遏作用。实验还发现解阻遏熟淀粉糖化酶的葡萄糖浓度(15mg/mL)比生淀粉糖化酶的要高。由于葡萄糖的阻遏作用不发生在翻译水平,而发生在转录水平上,而且生淀粉糖化酶(G1)与熟淀粉糖化酶(G2)来自同一条DNA链,可以推测存在mRNA的拼接。通过以生淀粉为碳源的比较实验,发现生淀粉对生淀粉糖化酶形成的诱导作用可能主要是通过mRNA拼接的调节来实现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号