首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Anaerobiospirillum succiniciproducens His225Gln, Asp262Asn, Asp263Asn, and Thr249Asn phosphoenolpyruvate carboxykinases were analyzed for their oxaloacetate decarboxylase, and pyruvate kinase–like activities. The His225Gln and Asp263Asn enzymes showed increased K m values for Mn2+ and PEP compared with the native enzyme, suggesting a role of His225 and Asp263 in Mn2+ and PEP binding. No mayor alterations in K m values for oxaloacetate were detected for the varied enzymes. Alterations of His225, Asp262, Asp263, or Thr249, however, did not affect the V max of the secondary activities as much as they affected the V max for the main reaction. The results presented in this communication suggest different rate-limiting steps for the primary reaction and the secondary activities.  相似文献   

2.
The kinetic affinity for CO2 of phosphoenolpyruvate PEP5 carboxykinase from Anaerobiospirillum succiniciproducens, an obligate anaerobe which PEP carboxykinase catalyzes the carboxylation of PEP in one of the final steps of succinate production from glucose, is compared with that of the PEP carboxykinase from Saccharomyces cerevisiae, which catalyzes the decarboxylation of oxaloacetate in one of the first steps in the biosynthesis of glucose. For the A. succiniciproducens enzyme, at physiological concentrations of Mn2+ and Mg2+, the affinity for CO2 increases as the ATP/ADP ratio is increased in the assay medium, while the opposite effect is seen for the S. cerevisiae enzyme. The results show that a high ATP/ADP ratio favors CO2 fixation by the PEP carboxykinase from A. succiniciproducens but not for the S. cerevisiae enzyme. These findings are in agreement with the proposed physiological roles of S. cerevisiae and A. succiniciproducens PEP carboxykinases, and expand recent observations performed with the enzyme isolated from Panicum maximum (Chen et al. (2002) Plant Physiology 128: 160–164).  相似文献   

3.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn2+ as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. (1997) Nature Struct. Biol. 4, 990–994] shows that Lys213 is one of the ligands to Mn2+ at the enzyme active site. Coordination of Mn2+ to a lysyl residue is not common and suggests a low pK a value for the ε-NH2 group of Lys213. In this work, we evaluate the role of neighboring Phe216 in contributing to provide a low polarity microenvironment suitable to keep the ε-NH2 of Lys213 in the unprotonated form. Mutation Phe216Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn2+, suggesting an increase of the pK a of Lys213. In agreement with this interpretation, theoretical calculations indicate an alkaline shift of 2.8 pH units in the pK a of the ε-amino group of Lys213 upon Phe216Tyr mutation.  相似文献   

4.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+). Molecular modeling of wild-type and mutant enzymes suggests that the lower catalytic efficiency of the Asp263Glu enzyme could be explained by a movement of the lateral chain of Lys(248), a critical catalytic residue, away from the reaction center. The effect on catalysis of introducing a negatively charged oxygen atom in place of N(epsilon-2) at position 225 is discussed in terms of altered binding energy of the intermediate enolpyruvate.  相似文献   

5.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

6.
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5′ kinase, a central 2′,3′ phosphatase and a C-terminal ligase. The phosphatase module is a Mn2+-dependent phosphodiesterase–monoesterase that dephosphorylates 2′,3′-cyclic phosphate RNA ends. Here we report the crystal structure of the phosphatase domain of Clostridium thermocellum Pnkp with Mn2+ and citrate in the active site. The protein consists of a core binuclear metallo-phosphoesterase fold (exemplified by bacteriophage λ phosphatase) embellished by distinctive secondary structure elements. The active site contains a single Mn2+ in an octahedral coordination complex with Asp187, His189, Asp233, two citrate oxygens and a water. The citrate fills the binding site for the scissile phosphate, wherein it is coordinated by Arg237, Asn263 and His264. The citrate invades the site normally occupied by a second metal (engaged by Asp233, Asn263, His323 and His376), and thereby dislocates His376. A continuous tract of positive surface potential flanking the active site suggests an RNA binding site. The structure illuminates a large body of mutational data regarding the metal and substrate specificity of Clostridium thermocellum Pnkp phosphatase.  相似文献   

7.
3-Mercaptopicolinic acid, a non-competitive inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.19) was used to study the control of gluconeogenesis by this enzyme in germinating marrow (Cucurbita pepo) cotyledons. In vitro, phosphoenolpyruvate carboxykinase was inhibited by 3-mercaptopicolinic acid, with aKi of 5.9 M. At 25°C the inhibitor caused an increase in the label incorporated from [2-14C]acetate into CO2, and a decrease in the label incorporated into the insoluble and neutral fractions. Phosphoenolpyruvate carboxykinase had a flux control coefficient for gluconeogenesis (C PEPCK J ) of between 0.7 and 1.0. 3-Mercaptopicolinic acid was a less effective inhibitor of phosphoenolpyruvate carboxykinase at lower temperatures (Ki = 8.6 M at 17°C, 13.3 M at 10°C) and had similar effects on the metabolism of [2-14C]acetate by marrow cotyledons when the temperature was reduced to 17°C and 10°C. The control coefficient for this enzyme did not change with temperature, indicating that phosphoenolpyruvate carboxykinase exerts a high degree of control over gluconeogenesis at all temperatures examined.Abbreviations PEP Phosphoenolpyruvate - PEPCK PEP carboxykinase The authors thank Dr. Ian Woodrow (University of Melbourne, Australia) for helpful discussions. This work was supported by a grant from the Science and Engineering Research Council, U.K. (GR/F 50978).  相似文献   

8.
Bacterial chitosanases share weak amino acid sequence similarities at certain regions of each enzyme. These regions have been assumed to be important for catalytic activities of the enzyme. To verify this assumption, the functional importance of the conserved region in a novel thermostable chitosanase (TCH-2) from Bacillus coagulans CK108 was investigated. Each of the conserved amino acid residues (Leu64, Glu80, Glu94, Asp98, and Gly108) was changed to aspartate and glutamine or asparagine and glutamate by site-directed mutagenesis, respectively. Kinetic parameters for colloidal chitosan hydrolysis were determined with wild-type and 10 mutant chitosanases. The Leu64 Arg and Leu64 Gln mutations were essentially inactive and kinetic parameters such as V max and k cat were approximately 1/107 of those of the wild-type enzyme. The Asp98 Asn mutation did not affect the K m value significantly, but decreased k cat to 15% of that of wild-type chitosanase. On the other hand, the Asp98 srarr; Glu mutation affected neither K m nor k cat. The observation that approximately 15% of activity remained after the substitution of Asp98 by Asn indicated that the carboxyl side chain of Asp98 is not absolutely required for catalytic activity. These results indicate that the Leu64 residue is directly involved in the catalytic activity of TCH-2.  相似文献   

9.
Two members of the ATP-dependent class of phosphoenolpyruvate carboxykinases (PEPCKs) (Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens) have been comparatively studied with regard to their oxaloacetate (OAA) decarboxylase and pyruvate kinase-like activities. The pyruvate kinase-like activities were dependent on the presence of Mn2+; at the same concentrations Mg2+ was not effective. These activities were synergistically activated by a combination of both metal ions. V max for these activities in A. succiniciproducens and S. cerevisiae PEPCKs was 0.13% and 1.2% that of the principal reaction, respectively. The OAA decarboxylase activity was nucleotide independent and, with decreasing order of effectiveness, these activities were supported by Mn2+ and Mg2+. AMP is an activator of these reactions. V max for the OAA decarboxylase activities in A. succiniciproducens and S. cerevisiae PEPCKs was 4% and 0.2% that of the PEP-forming reaction, respectively.  相似文献   

10.
F. hepatica pyruvate kinase and phosphoenolpyruvate (PEP) carboxykinase were found to have properties of regulatory enzymes in the dissimilation of PEP and the control of metabolic flow. Mn2+ and K+ were required for pyruvate kinase activity. In the presence of fructose-1, 6-diphosphate (FDP), Mg2+ could substitute for Mn2+. FDP caused a 4-fold increase in the Mn2+ activated pyruvate kinase activity. This was accompanied by a 12-fold decrease in apparent Km(PEP) and a 3-fold decrease in apparent Km (ADP). ATP markedly inhibited F. hepatica pyruvate kinase, but this inhibition was relieved by FDP. Estimates of metabolic levels indicated that the pyruvate kinase is saturated with PEP and ADP in vivo, but will be highly sensitive to fluctuations in the physiological concentrations of FDP and ATP. NADH doubled the activity of the PEP carboxykinase reaction and decreased the apparent Km (PEP) for this enzyme 3-fold. While the maximal activity of the PEP carboxykinase reaction was substantially higher than the pyruvate kinase reaction, the steady state concentration of PEP suggests that the PEP carboxykinase will not be saturated with this substrate.  相似文献   

11.
In Acetobacter aceti growing on pyruvate as the only source of carbon and energy, oxaloacetate (OAA) is produced by a phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31). The enzyme was purified 122-fold and a molecular weight of about 380,000 was estimated by gel filtration.The optimum pH was 7.5 and the K m values for PEP and NaHCO3 were 0.49 mM and about 3 mM, respectively. The enzyme needed a divalent cation; the K m for Mn2+, Co2+ and Mg2+ were 0.12, 0.26 and 0.77 mM, respectively. Maximal activity was only obtained with Mg2+. Mn2+ and Co2+ became inhibitory at high concentrations.The activity was inhibited by succinate and, to a lesser extent, by fumarate, citrate, -ketoglutarate, aspartate and glutamate.As compared with the corresponding enzyme from A. xylinum, the PEP carboxylase of A. aceti showed the following differences: a) It had an absolute requirement for acetyl CoA (K a 0.18 mM) or propionyl CoA (K a 0.2 mM). b) It was not affected by ADP. c) It was sensitive to thiol blocking agents.Abbreviations PEP phosphoenolpyruvate - OAA oxaloacetate - MW molecular weight - TEMG buffer 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM glutathione - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid  相似文献   

12.
The presence and properties of the enzymes involved in the synthesis and conversion of phospho(enol)pyruvate (PEP) and oxaloacetate (OAA), the precursors for aspartate-derived amino acids, were investigated in three different Corynebacterium strains. This study revealed the presence of both PEP carboxykinase 0.29 mol·min–1·mg–1 of protein [units (U)·mg–1] and PEP synthetase (0.13 U·mg–1) in C. 2 glutamicum as well as pyruvate kinase (1.4 U·mg–1) and PEP carboxylase (0.16 U·mg–1). With the exception of PEP carboxykinase these activities were also present in glucose-grown C. flavum and C. lactofermentum. Pyruvate carboxylase activity was not detected in all three species cultivated on glucose or lactate. At least five enzyme activities that utilize OAA as a substrate were detected in crude extracts of C. glutamicum: citrate synthase (2 U·mg–1), malate dehydrogenase (2.5 U·mg–1), glutamate: OAA transaminase (1 U·mg–1), OAA-decarboxylating activity (0.89 U·mg–1) and the previously mentioned PEP carboxykinase (0.29 U·mg–1). The partially purified OAA-decarboxylase activity of C. glutamicum was completely dependent on the presence of inosine diphosphate and Mn2+, had a Michaelis constant (K m) of 2.0mm for OAA and was inhibited by ADP and coenzyme A (CoA). Examination of the kinetic properties showed that adenine nucleotides and CoA derivatives have reciprocal but reinforcing effects on the enzymes catalyzing the interconversion of pyruvate, PEP and OAA in C. glutamicum. A model for the regulation of the carbon flow based on these findings is presented.Correspondence to: M. S. M. Jetten  相似文献   

13.
The effectiveness of nitrogen sources in Feijoa somatic embryogenesis   总被引:4,自引:0,他引:4  
Immature and mature zygotic embryos excised from Feijoa fruits were employed as explants and the effects of NH4 + and NO3 ionic concentration in basal LPm culture medium supplemented with 2,4-D (10 M) were evaluated. Moreover, the addition of 4 mM of Asn, Gln, and Arg, and levels of Gln (0 to 8 mM) were tested. The original NH4 + and NO3 concentration present in the LPm culture medium supplemented with Gln (4 mM) resulted in the highest somatic embryo number from immature zygotic embryos. For mature zygotic embryos, the addition of Asn, Gln or Arg to the basal LPm culture medium resulted in improved somatic embryogenesis induction. Ten weeks in culture allowed the highest somatic embryo number when mature zygotic embryos were used as explant. Half-strength MS culture medium supplemented with BAP (0.5 M) enhanced the conversion of somatic embryos to plantlets.  相似文献   

14.
T. C. Ta  K. W. Joy 《Planta》1986,169(1):117-122
15N-labelled (amino group) asparagine (Asn), glutamate (Glu), alanine (Ala), aspartate (Asp) and serine (Ser) were used to study the metabolic role and the participation of each compound in the photorespiratory N cycle ofPisum sativum L. leaves. Asparagine was utilised as a nitrogen source by either deamidation or transamination, Glu was converted to Gln through NH3 assimilation and was a major amino donor for transamination, and Ala was utilised by transamination to a range of amino acids. Transamination also provided a pathway for Asp utilisation, although Asp was also used as a substrate for Asn synthesis. In the photorespiratory synthesis of glycine (Gly), Ser, Ala, Glu and Asn acted as sources of amino-N, contributing, in the order given, 38, 28, 23, and 7% of the N for glycine synthesis; Asp provided less than 4% of the amino-N in glycine. Calculations based on the incorporation of15N into Gly indicated that about 60% (Ser), 20% (Ala), 12% (Glu) and 11% (Asn) of the N metabolised from each amino acid was utilised in the photorespiratory nitrogen cycle.Abbreviations Ala alamine - Asn asparagine - Asp aspartate - Glu glutamate - MOA methoxylamine - Ser serine  相似文献   

15.
  1. A method for the direct recording of the PEP efflux from isolated mitochondria is described.
  2. This method has been used to show the stimulation of PEP efflux by externally added Mn++ ions.
  3. Valinomycin, uncoupler and oleate were also shown to stimulate PEP efflux.
  4. Valinomycin caused an increase in the internal concentration of both PEP and citrate.
  5. The results indicate that the major pathway of PEP synthesis in isolated mitochondria is via PEP carboxykinase and the results do not call for an unknown pathway of metabolism.
  6. Two interactions between PEP and citrate are described; competition for the mitochondrial interior and the stimulation of PEP production by citrate.
  相似文献   

16.

Background

Potential xeroderma pigmentosum group D (XPD), also called excision repair cross-complimentary group two (ERCC2), Lys751Gln and Asp312Asn polymorphisms have been implicated in gastric cancer risk among different ethnicities.

Methods

We aimed to explore the effect of XPD Lys751Gln and Asp312Asn polymorphisms on the susceptibility to gastric cancer among different ethnicities through a systematic review and meta-analysis. Each initially included article was scored for quality appraisal. Desirable data were extracted and registered into databases. 13 studies were ultimately eligible for the meta-analysis of Lys751Gln polymorphism and 9 studies for the meta-analysis of Asp312Asn polymorphism. We adopted the most probably appropriate genetic model (recessive model) for both Lys751Gln and Asp312Asn polymorphisms. Potential sources of heterogeneity were sought out via subgroup and sensitivity analyses, and publication biases were estimated.

Results

Statistically significant findings were apparently noted in Asians but not in Caucasians for both XPD Lys751Gln and XPD Asp312Asn polymorphisms. A statistically significant finding could be seen in noncardia-type gastric cancer for XPD Lys751Gln polymorphism. A statistically significant finding could also be seen in high quality subgroup, small-and-moderate sample size subgroup, articles published after 2007, or PCR-RFLP genotyping subgroup for XPD Asp312Asn polymorphism.

Conclusions

Our meta-analysis indicates that XPD Gln751Gln (CC) genotype and Asn312Asn (AA) genotype may seem to be more susceptible to gastric cancer in Asian populations but not in Caucasian populations, suggesting that the two genotypes may be important biomarkers of gastric cancer susceptibility for Asian populations, the assumption that needs to be further confirmed in well-designed studies among different ethnicities. Gln751Gln (CC) genotype may also be associated with noncardia-type gastric cancer risk, which should also be confirmed among different ethnicities in the future.  相似文献   

17.
Summary Diffusion coefficients for FITC-molecular probes in intercellular pores (D) and rate of molecular probe loss into the vacuole (k1) have been obtained for FITC molecular probes in staminal hairs ofSetcreasea purpurea. The kinetic curves of FITC-Gly, -Ala, -Leu,-Ser, -Thr, -Cys, -Met, -Tyr, -Asp, -Glu, -Asn, -Gln, -Lys, -His,-Arg, -(Asp)2, -(Glu)2, -(Lys)2, -(Asp)3, -(Glu)3, -(Gln)2, -(Gln)3, -(Gln)4, and carboxyfluorescein (group I probes) matched the curves calculated for simple diffusion through a chain of cells, while the majority of kinetic curves of FITC-Phe, and -Try (group II probes) did not. None of the kinetic curves for FITC-(Met)2 and -(His)2 (group III probes) matched. Average Ds for group I probes ranged from 0.77× 10–8cm2/s to 3.75× 10–8cm2/s and for group II probes were 0.50× 10–8cm2/s. A meaningful average D for group III probes could not be calculated. Average k1 for group I probes ranged from 1.62× 10–7/m2/s to 13.21× 10–7/m2/s, and for group II probes were 5.42 and 11.54× 10–7/m2/s. Average k1s for group III probes could not be calculated. Symplastic transport occurred by cell-to-cell diffusion for most of the probes (e.g., group I probes) but not always for some (e.g., group II probes) and never for others (group III probes). The rate of cell-to-cell diffusion and loss within the vacuole depended upon the molecule's specific structure, molecular weight and charge. We concluded that plasmodesmata select for molecules that are hydrophilic, small and have a charge of from — 2 to — 4, and against molecules that contain either Phe, Try, Met or His groups.Abbreviations CF carboxyfluorescein - D diffusion coefficients for FITC-molecular probes in intercellular pores - k1 rate of FITC-molecular probe loss  相似文献   

18.
In bacterial reaction centers (RCs), changes of protonation state of carboxylic groups, of quinone-protein interactions as well as backbone rearrangements occuring upon QB photoreduction can be revealed by FTIR difference spectroscopy. The influence of compensatory mutations to the detrimental Asp L213 Asn replacement on QB /QB FTIR spectra of Rb. sphaeroides RCs was studied in three double mutants carrying a Asn M44 Asp, Arg M233 Cys, or Arg H177 His suppressor mutation. The proton uptake by Glu L212 upon QB formation, as reflected by the positive band at 1728 cm–1, is increased in the Asn M44 Asp and Arg H177 His suppressor RCs with respect to native RCs, and remains comparable to that observed in Asp L213 Asn mutant RCs. Only the Arg M233 Cys suppressor mutation affected the 1728 cm–1 band, reducing its amplitude to near native level. Thus, there is no clear correlation between the apparent extent of proton uptake by Glu L212 and the recovery of the proton transfer RC function. In all of the mutant spectra, several protein (amide I and amide II) and quinone anion (C...O/C...C) modes are perturbed compared to the spectrum of native RCs. These IR data show that all of the compensatory mutations alter the semiquinone-protein interactions and the backbone providing direct evidence of structural changes accompanying the restoration of efficient proton transfer in RCs containing the Asp L213 Asn lesion.  相似文献   

19.
Summary In vivo studies of the incoporation of [U-14C]glycine into purine nucleotides have established the de novo pathway for purine biosynthesis in Artemia sp. during the early period of larval development. This pathway can be modified by the salt concentration of the incubation media. In addition, Artemia of different geographical origins may differ with respect to the detection, functionality and variability of this metabolical pathway.Abbreviations ADP adenosine, diphosphate - ASN acid soluble nucleotides - ATP adenosine triphosphate - DNA desoxyribonucleic acid - GDP guanosine diphosphate - GP4G pl, p4-diguanosine 5-tetraphosphate - HPLC high performance liquid chromatography - PCA perchloric acid - RNA ribonucleic acid  相似文献   

20.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号