首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Two libraries, together containing about 10(6) colonies, have been constructed by cloning different size fractions of a partial Sau3A digest of rat genomic DNA in the cosmid vector pTM. Upon screening with two cDNA clones, one containing alpha A2-crystallin and one containing beta B1-crystallin sequences, 14 cosmid clones were isolated which were beta B1-crystallin-specific; none was found which contained alpha A2-crystallin sequences. The inserts of the beta B1 clones, which range from 35 to 45 kb in length, contain overlapping DNA segments covering more than 60 kb of rat genomic DNA. The composite BamHI restriction map of this region shows a single beta B1-crystallin gene, which is interrupted by several intronic sequences. Five recombinants hybridizing with two different rat lens gamma-crystallin cDNA clones were also isolated from these libraries. Four of these contain 31- to 41-kb inserts, whereas the fifth recombinant contains a 12.2-kb insert. Hybridization analysis with 5' and 3'-specific cDNA fragments indicates that altogether these inserts contain six gamma-crystallin genes, three of which are located on one insert of only 31 kb.  相似文献   

2.
Modern cultivated barley is an important cereal crop with an estimated genome size of 5000 Mb. To develop the resources for positional cloning and structural genomic analyses in barley, we constructed a bacterial artificial chromosome (BAC) library for the cultivar Morex using the cloning enzyme HindIII. The library contains 313344 clones (816 384-well plates). A random sampling of 504 clones indicated an average insert size of 106 kbp (range=30–195 kbp) and 3.4% empty vectors. Screening the colony filters for chloroplast DNA content indicated an exceptionally low 1.5% contamination with chloroplast DNA. Thus, the library provides 6.3 haploid genome equivalents allowing a >99% probability of recovering any specific sequence of interest. High-density filters were gridded robotically using a Genetix Q-BOT in a 4×4 double-spotted array on 22.5-cm2 filters. Each set of 17 filters allows the entire library to be screened with 18432 clones represented per filter. Screening the library with 40 single copy probes identified an average 6.4 clones per probe, with a range of 1–13 clones per probe. A set of resistance-gene analog (RGA) sequences identified 121 RGA-containing BAC clones representing 20 different regions of the genome with an average of 6.1 clones per locus. Additional screening of the library with a P-loop disease resistance primer probe identified 459 positive BAC clones. These data indicate that this library is a valuable resource for structural genomic applications in barley. Received: 20 September 1999 / Accepted: 25 March 2000  相似文献   

3.
 The recent recovery of maize (Zea mays L.) single-chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses has provided novel source materials for the potential isolation of maize chromosome-specific sequences for use in genetic mapping and gene cloning. We report here the application of a technique, known as representational difference analysis (RDA), to selectively isolate maize sequences from a maize chromosome-3 addition line of oat. DNA fragments from the addition line and from the oat parent were prepared using BamHI digestion and primer ligation followed by PCR amplification. A subtractive hybridization technique using an excess of the oat parental DNA was employed to reduce the availability for amplification of DNA fragments from the addition lines that were in common with the ones from the oat parental line. After three rounds of hybridization and amplification, the resulting DNA fragments were cloned into a plasmid vector. A DNA library containing 400 clones was constructed by this method. In a test of 18 clones selected at random from this library, four (22%) detected maize-specific repetitive DNA sequences and nine (50%) showed strong hybridization to genomic DNA of maize but weak hybridization to genomic DNA of oat. Among these latter nine clones, three detected low-copy DNA sequences and two of them detected DNA sequences specific to chromosome 3 of maize, the chromosome retained in the source maize addition line of oat. The other eight out of the 13 clones that had strong hybridization to maize DNA detected repetitive DNA sequences or high-copy number sequences present on most or all maize chromosomes. We estimate that the maize DNA sequences were enriched from about 1.8% to over 72% of the total DNA by this procedure. Most of the isolated DNA fragments detected multiple or repeated DNA sequences in maize, indicating that the major part of the maize genome consists of repetitive DNA sequences that do not cross-hybridize to oat genomic sequences. Received: 18 November 1997 / Accepted: 12 March 1998  相似文献   

4.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

5.
6.
We report the isolation of a set of hypervariable minisatellite DNA sequences from a blue tit Parus caeruleus genomic DNA library. In our strategy, we cloned a minisatellite-rich DNA fraction into a charomid vector. The resulting cosmid library was screened with the two minisatellite DNA probes 33.6 and 33.15 for recombinants containing a minisatellite DNA insert. A total of 233 positive clones were isolated. Of 37 clones that have been analysed, nine gave polymorphic signals and can be used as single locus probes (SLPs). Four of the SLPs were investigated in more detail. The number of alleles, the heterozygosity and the mutation rate were estimated. Linkage analysis revealed that two of these loci were linked. The SLPs are of value to studies of the mating system and reproductive success in the blue tit, and may also be useful in population genetic studies.  相似文献   

7.
 A soybean bacterial artificial chromosome (BAC) library, comprising approximately 45 000 clones, was constructed from high-molecular-weight nuclear DNA of cultivar Williams 82, which carries the Rps1-k gene for resistance against Phytophthora sojae. The library is stored in 130 pools with about 350 clones per pool. Completeness of the library was evaluated for 21 random sequences including four markers linked to the Rps1 locus and 16 cDNAs. We identified pools containing BACs for all sequences except for one cDNA. Additionally, when screened for possible contaminating BAC clones carrying chloroplast genes, no sequences homologous to two barley chloroplast genes were found. The estimated average insert size of the BAC clones was about 105 kb. The library comprises about four genome equivalents of soybean DNA. Therefore, this gives a probability of 0.98 of finding a specific sequence from this library. This library should be a useful resource for the positional cloning of Rps1-k, and other soybean genes. We have also evaluated the feasibility of an RFLP-based screening procedure for the isolation of BAC clones specific for markers that are members of repetitive sequence families, and are linked to the Rps1-k gene. We show that BAC clones isolated for two genetically linked marker loci, Tgmr and TC1-2, are physically linked. Application of this method in expediting the map-based cloning of a gene, especially from an organism, such as soybean, maize and wheat, with a complex genome is discussed. Received: 12 May 1998/Accepted: 24 August 1998  相似文献   

8.
Recent research has shown that BIBAC (binary bacterial artificial chromosome) and TAC (transformation-competent artificial chromosome) vector systems are very useful tools for map-based cloning of agronomically important genes in plant species. We have developed a new TAC vector that is suitable for both dicot and monocot transformation. Using this new TAC vector, we constructed large-insert genomic libraries of tomato and rice. The tomato library contains 96,996 clones (28.3-38.5 kb insert size) and has 3.18 haploid genome equivalents. The rice TAC library has 32.7 kb average insert size and has 9.24 haploid genome equivalents. The quality of these two libraries was tested using PCR to verify genome coverage. Individual clones were characterized to confirm insert integrity by Southern analysis, end sequencing and genetic mapping. To investigate the potential application of these TAC libraries in map-based cloning, TAC constructs containing a 45 kb fragment were introduced into the rice genome via Agrobacterium-mediated transformation. Molecular analysis indicates that the 45 kb fragment was successfully transferred into the rice genome. Although rearrangements of the introduced DNA were detected, 50% of regenerated plants contained at least one intact copy of the 45 kb clone and associated vector sequences. These libraries provide us with a valuable resource to rapidly isolate important genes in tomato and rice.  相似文献   

9.
The recent development of yeast artificial chromosome (YAC) vectors has provided a system for cloning fragments that are over ten times larger than those that can be cloned in more established systems. We have developed a method for the rapid isolation of terminal sequences from YAC clones. The YAC clone is digested with a range of restriction enzymes, a common linker is ligated to the DNA fragments and terminal sequences are amplified using a vector specific primer and a linker specific primer. Sequence data derived from these terminal specific products can be used to design primers for a further round of screening to isolate overlapping clones. The method also provides a convenient method of generating Sequence Tagged Sites for the mapping of complex genomes.  相似文献   

10.
We have constructed an arrayed, large insert, multiple coverage genomic library of Pneumocystis carinii DNA using the bacteriophage P1 cloning system. The library consists of ∽4800 independent clones with an average insert size of ∽55 kbp individually arrayed in 50 microtiter plates, and is readily screened on ten or fewer microtiter plate-sized filters using a high density colony replicating device. Screening of the library for unique P. carinii sequences detected an average of 4–5 positive clones for each, consistent with a several-fold coverage of the ∽10-mbp P. carinii genome. Restriction and hybridization analyses demonstrated that the P1 clones in this library are quite stable and contain few, if any, chimeric inserts. Thus, this arrayed, large insert library off. carinii genomic DNA will be a valuable tool in the future genetic dissection of this important pathogen.  相似文献   

11.
Pest and disease problems are important constraints of cassava production and host plant resistance is the most efficient method of combating them. Breeding for host plant resistance is considerably slowed down by the crop’s biological constraints of a long growth cycle, high levels of heterozygosity and a large genetic load. More efficient methods such as gene cloning and transgenesis are required to deploy resistance genes. To facilitate the cloning of resistance genes, bacterial artificial chromosome (BAC) library resources have been developed for cassava. Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly. The TMS30001 library has 55 296 clones with an insert size range of 40–150 kb with an average of 80 kb, while the MECU72 library consists of 92 160 clones and an insert size range of 25–250 kb average of 93 kb. Based on a genome size of 772 Mb, the TMS30001 and MECU72 libraries have a 5 and 11.3 haploid genome equivalents and a 95 and 99 chance of finding any sequence, respectively. To demonstrate the potential of the libraries, the TMS30001 library was screened by southern hybridization using a cassava analog (CBB1) of the Xa21 gene from rice that maps to a region containing a QTL for resistance to CBB as probe. Five BAC clones that hybridized to CBB1 were isolated and a Hind III fingerprint revealed 2–3 copies of the gene in individual BAC clones. A larger scale analysis of resistance gene analogs (RGAs) in cassava has also been conducted in order to understand the number and organization of RGAs. To scan for gene and repeat DNA content in the libraries, end-sequencing was performed on 2301 clones from the MECU72 library. A total of 1705 unique sequences were obtained with an average size of 715 bp. Database homology searches using BLAST revealed that 458 sequences had significant homology with known proteins and 321 with transposable elements. The use of the library in positional cloning of pest and disease resistance genes is discussed.  相似文献   

12.
Using the bacteriophage P1 cloning system, we have constructed a two to three times coverage, high-molecular-weight (HMW) genomic library from mouse C127 fibroblast cells. The library consists of about 127,500 clones with an average insert size of about 70 kb that are organized into 300 primary pools containing approximately 425 clones per pool. For screening purposes the primary pools are combined into secondary pools (4250 clones each) and tertiary pools (21,250 clones each). Screening is performed by the polymerase chain reaction (PCR) with DNA isolated from the secondary and tertiary pools. We have screened the library for 13 different mouse sequences and have detected 11. Clones generated from two of the eleven positive screens were isolated from the library (those containing the c-fos and Gi2 genes) and were further characterized. Direct double-stranded sequencing of DNA from P1 clones with primers bordering the insert provided sequence information from each end of the cloned DNA.  相似文献   

13.
We report a simple and efficient method, which combines restriction endonuclease digestion and deoxynucleotide tailing, for cloning unknown genomic sequences adjacent to a known sequence. Total genomic DNA is partially digested with the frequent-cutting restriction enzymeNla III. A homo-oligomeric cytosine tail is added by terminal transferase. The tailed DNA fragments are used as the template for cloning flanking regions from all sequences of interest. A first round PCR amplification is performed with a gene-specific primer and the selective (modified polyguanine) anchor primer complementary to the cytosine tail and theNla III recognition site, with a universal amplification primer sequence at its 5′ end. This is followed by another PCR amplification with a nested gene-specific primer and the universal amplification primer. Finally, the amplified products are fractionated, cloned, and sequenced. Using this method, we cloned the upstream region of a salt-induced gene based upon a partial cDNA clone (RSC5-U) obtained from sunflower (Helianthus annuus L.).  相似文献   

14.
The oomycete plant pathogen Phytophthora nicotianae causes diseases on a wide range of plant species. To facilitate isolation and functional characterization of pathogenicity genes, we have constructed a large-insert bacterial artificial chromosome (BAC) library using nuclear DNA from P. nicotianae H1111. The library contains 10,752 clones with an average insert size of 90 kb and is free of mitochondrial DNA. The quality of the library was verified by hybridization with 37 genes, all of which resulted in the identification of multiple positive clones. The library is estimated to be 10.6 haploid genome equivalents based on hybridization of 23 single-copy genes and the genome size of P. nicotianae was estimated to be 95.5 Mb. Hybridization with a nuclear repetitive DNA probe revealed that 4.4% of clones in the library contained 28S rDNA. Hybridization of total genomic DNA to the library indicated that at least 39% of the BAC library contains repetitive DNA sequences. A BAC pooling strategy was developed for efficient library screening. The library was used to identify and characterize BAC clones containing an Hsp70 gene family whose four members were identified to be clustered within approximately 18 kb in the P. nicotianae genome based on the physical mapping of eight BACs spanning a genomic region of approximately 186 kb. The BAC library created provides an invaluable resource for the isolation of P. nicotianae genes and for comparative genomics studies.  相似文献   

15.
Using improved techniques, a representative P1 library of Arabidopsis was constructed and characterized. Megabase genomic DNA was prepared from nuclei and partially digested with Sau3AI. DNA fragments of 75–100 kb were selected by size fractionation in low melting agarose, concentrated by a spot-evaporation/dialysis method, and cloned in the pAd10sacBII P1 vector. The library contains 10 080 clones individually stored in microtiter plates. With an average insert size of about 80 kb, the library represents about eight haploid genomic equivalents of this plant. This library can be screened rapidly by dot hybridization of plate and well position pools. Characterization of the library by restriction analysis, screening with RFLP probes, RFLP mapping of insert end sequences, and chromosome walking shows that the library is of high quality with respect to insert site, completeness, and absence of chimeric artifacts. With this library a contig of about 600 kb has been constructed in the cer9 locus region. This P1 library is expected to be useful for genome mapping and gene cloning in Arabidopsis research programs.  相似文献   

16.
A chickpea (Cicer arietinum L.) Bacterial Artificial Chromosome (BAC) library from germplasm line, FLIP 84-92C, was constructed to facilitate positional cloning of disease resistance genes and physical mapping of the genome. The BAC library has 23,780 colonies and was calculated to comprise approximately 3.8 haploid-genome equivalents. Studies on 120 randomly chosen clones revealed an average insert size of 100 kb and no empty clones. Colony hybridization using the RUBP carboxylase large subunit as a probe resulted in a very low percentage of chloroplast DNA contamination. Two clones with a combined insert size of 200 kb were isolated after the library was screened with a Sequence Tagged Microsatellite Site (STMS) marker, Ta96, which is tightly linked to a gene (Foc3) for resistance to fusarium wilt caused by Fusarium oxysporum Schlechtend.: Fr. f. sp. ciceris (Padwick) race 3 at a genetic distance of 1 cM. Also, these two clones were analyzed with several resistance gene analog (RGA) markers. End sequencing of these clones did not identify repetitive sequences. The development of the BAC library will facilitate isolation of Foc3 and allow us to perform physical mapping of this genomic region where additional R genes against other races of the wilt causing pathogen are positioned.Communicated by C. Möllers  相似文献   

17.
The commercially valuable transgenic papaya lines carrying the coat protein (CP) gene of Papaya ringspot virus (PRSV) and conferring virus resistance have been developed in Hawaii and Taiwan in the past decade. Prompt and sensitive protocols for transgene-specific and event-specific detections are essential for traceability of these lines to fulfill regulatory requirement in EU and some Asian countries. Here, based on polymerase chain reaction (PCR) approaches, we demonstrated different detection protocols for characterization of PRSV CP-transgenic papaya lines. Transgene-specific products were amplified using different specific primer pairs targeting the sequences of the promoter, the terminator, the selection marker, and the transgene, and the region across the promoter and transgene. Moreover, after cloning and sequencing the DNA fragments amplified by adaptor ligation-PCR, the junctions between plant genomic DNA and the T-DNA insert were elucidated. The event-specific method targeting the flanking sequences and the transgene was developed for identification of a specific transgenic line. The PCR patterns using primers designed from the left or the right flanking DNA sequence of the transgene insert in three selected transgenic papaya lines were specific and reproducible. Our results also verified that PRSV CP transgene is integrated into transgenic papaya genome in different loci. The copy number of inserted T-DNA was further confirmed by real-time PCR. The event-specific molecular markers developed in this investigation are crucial for regulatory requirement in some countries and intellectual protection. Also, these markers are helpful for prompt screening of a homozygote-transgenic progeny in the breeding program.  相似文献   

18.
Liriodendron tulipifera L., a member of the Magnoliaceae, occupies an important phylogenetic position as a basal angiosperm that has retained numerous putatively ancestral morphological characters, and thus has often been used in studies of the evolution of flowering plants and of specific gene families. However, genomic resources for these early branching angiosperm lineages are very limited. In this study, we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from L. tulipifera. Flow cytometry estimates that this nuclear genome is approximately 1,802 Mbp per haploid genome (±16 SD). The BAC library contains 73,728 clones, a 4.8-fold genome coverage, with an average insert size of 117 kb, a chloroplast DNA content of 0.2%, and little to no bacterial sequences nor empty vector content clones. As a test of the utility of this BAC library, we screened the library with six single/low-copy genic probes. We obtained at least two positive clones for each gene and confirmed the clones by DNA sequencing. A total of 182 paired end sequences were obtained from 96 of the BAC clones. Using BLAST searches, we found that 25% of the BAC end sequences were similar to DNA sequences in GenBank. Of these, 68% shared sequence with transposable elements and 25% with genes from other taxa. This result closely reflected the content of random sequences obtained from a small insert genomic library for L. tulipifera, indicating that the BAC library construction process was not biased. The first genomic DNA sequences for Liriodendron genes are also reported. All the Liriodendron genomic sequences described in this paper have been deposited in the GenBank data library. The end sequences from shotgun genomic clones and BAC clones are under accession DU169330–DU169684. Partial sequences of Gigantea, Frigida, LEAFY, cinnamyl alcohol dehydrogenase, 4-coumarate:CoA ligase, and phenylalanine ammonia-lyase genes are under accession DQ223429–DQ223434. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
A DNA isolation method suitable for genomic library construction and RFLP analyses of the forage legume Stylosanthes was developed. Probes isolated using this method were used to investigate the feasibility of constructing RFLP-based genetic maps in this genus. Two hundred and seventy-one PstI genomic DNA and 134 cDNA clones were analysed against four Stylosanthes accessions, including two tetraploids and two diploids, with the use of two restriction enzymes, DraI and HindIII. The proportion of clones which detected single-copy sequences from the PstI genomic library was higher than that from the cDNA library, but the percentage of clones which detected low-copy sequences was doubled in the latter. There was no significant difference in the level of RFLPs detected by gDNA and cDNA probes, although the level of polymorphism was lower in the diploids. A large proportion of RFLPs seemed to have resulted from mutation/base substitution events, and this was especially the case in diploids.  相似文献   

20.
Mutation in the cauliflower gene Or causes high levels of -carotene to accumulate in various tissues of the plant that are normally devoid of carotenoids. To decipher the molecular basis by which Or regulates carotenoid accumulation, we have undertaken the isolation of Or by a map-based cloning strategy. Two previously isolated, locus-specific, sequence-characterized amplified region (SCAR) markers that flank Or were employed for the analysis of a large segregating population consisting of 1632 F2 individuals, and a high-resolution genetic linkage map of the Or locus region was developed. To facilitate positional cloning, we constructed a cauliflower genomic library in a bacterial artificial chromosome (BAC) vector, using high molecular weight DNA from Or homozygotes. The BAC library comprises 60,288 clones with an average insert size of 110 kb, and represents an estimated 10-fold coverage of the genome. A BAC contig encompassing the Or locus was established by screening the library with a marker that is closely linked to Or and by identifying overlapping BAC clones by chromosome walking. Physical mapping delimited the Or locus to a 50-kb DNA fragment within a single BAC clone, which corresponds to a genetic interval of 0.3 cM.Communicated by R. Hagemann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号