首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topology of integral cytoplasmic membrane proteins can be analyzed using alkaline phosphatase fusions by determining which constructs have low and which have high specific activity. We show that in all cases the enzymatic activity is due to the fraction of the alkaline phosphatase moiety of the fusion protein localized to the periplasm. We present evidence that these fusions can also be used to analyze the process of assembly of cytoplasmic proteins into the membrane. The rate of acquisition of protease resistance of the alkaline phosphatase moiety of such hybrid proteins is compared for fusions to periplasmic and cytoplasmic domains. We show that this process, which is assumed to be representative of export of alkaline phosphatase, is significantly slower for fusions to cytoplasmic and certain periplasmic domains than for most periplasmic domains. These results are discussed in the context of the normal assembly of integral membrane proteins.  相似文献   

2.
The identification of exported proteins with gene fusions to invasin   总被引:2,自引:0,他引:2  
Exported proteins are integral to understanding the biology of bacterial organisms. They have special significance in pathogenesis research because they can mediate critical interactions between pathogens and eukaryotic cell surfaces. Further, they frequently serve as targets for vaccines and diagnostic tests. The commonly used genetic assays for identifying exported proteins use fusions to alkaline phosphatase or beta-lactamase. These systems are not ideal for identifying outer membrane proteins because they identify a large number of inner membrane proteins as well. We addressed this problem by developing a gene fusion system that preferentially identifies proteins that contain cleavable signal sequences and are released from the inner membrane. This system selects fusions that restore outer membrane localization to an amino terminal-truncated Yersinia pseudotuberculosis invasin derivative. In the present study, a variety of Salmonella typhimurium proteins that localize beyond the inner membrane were identified with gene fusions to this invasin derivative. Previously undescribed proteins identified include ones that share homology with components of fimbrial operons, multiple drug resistance efflux pumps and a haemolysin. All of the positive clones analysed contain cleavable signal sequences. Moreover, over 40% of the genes identified encode putative outer membrane proteins. This system has several features that may make it especially useful in the study of genetically intractable organisms.  相似文献   

3.
This report describes a new transposon designed to facilitate the combined use of beta-galactosidase and alkaline phosphatase gene fusions in the analysis of protein localization. The transposon, called TnlacZ, is a Tn5 derivative that permits the generation of gene fusions encoding hybrid proteins carrying beta-galactosidase at their C termini. In tests with plasmids, TnlacZ insertions that led to high cellular beta-galactosidase activity were restricted to sequences encoding either cytoplasmic proteins or cytoplasmic segments of a membrane protein. The fusion characteristics of TnlacZ are thus complementary to those of TnphoA, a transposon able to generate alkaline phosphatase fusions whose high-activity insertion sites generally correspond to periplasmic sequences. The structure of TnlacZ allows the conversion of a TnlacZ fusion into the corresponding TnphoA fusion (and vice versa) through recombination or in vitro manipulation in a process called fusion switching. Fusion switching was used to generate the following two types of fusions with unusual properties: a low-specific-activity beta-galactosidase-alkaline phosphatase gene fusion and two toxic periplasmic-domain serine chemoreceptor-beta-galactosidase gene fusions. The generation of both beta-galactosidase and alkaline phosphatase fusions at exactly the same site in a protein permits a comparison of the two enzyme activities in evaluating the subcellular location of the site, such as in studies of membrane protein topology. In addition, fusion switching makes it possible to generate gene fusions whose properties should facilitate the isolation of mutants defective in the export or membrane anchoring of different cell envelope proteins.  相似文献   

4.
An approach to analyzing the topology of membrane proteins with alkaline phosphatase fusions is described. Precise fusions were constructed by using polymerase chain reaction at the C terminus of each hydrophilic region of the membrane protein. The disruption of topogenic signals is thereby minimized, and predictable anomalous results are avoided. The Escherichia coli MalG protein has been analyzed.  相似文献   

5.
The activity of bacterial alkaline phosphatase (PhoA) is dependent on it being exported across the plasma membrane. A plasmid vector (pJEM11) allowing fusions between phoA and genes encoding exported proteins was constructed to study protein export in mycobacteria. Introduction of the Mycobacterium fortuitum beta-lactamase gene (blaF*) into this vector led to the production in M. smegmatis of protein fusions with PhoA activity. A genomic library from M. tuberculosis was constructed in pJEM11 and screened in M. smegmatis for clones with PhoA activity. Sequences of the M. tuberculosis inserts directing the production of protein fusions in these PhoA-positive clones were determined. They include part of the already-known exported 19-kDa lipoprotein, a sequence with similarities to the exported 28-kDa antigen from M. leprae, a sequence encoding a protein sharing conserved amino acid motifs with stearoyl-acyl-carrier-protein desaturases, and unknown sequences. This approach thus appears to identify sequences directing protein export, and we expect that more extensive screening of such libraries will lead to a better understanding of protein export in M. tuberculosis.  相似文献   

6.
Escherichia coli exports previously folded and biotinated protein domains   总被引:9,自引:0,他引:9  
Biotination of proteins is a post-translational modification that requires a folded acceptor domain. We previously showed that an acceptor domain fused to the carboxyl terminus of several cytosolic proteins results in biotinated fusion proteins in vivo. We now show that proteins encoded by translational gene fusions of two periplasmic proteins, alkaline phosphatase and TEM beta-lactamase, to carboxyl-terminal biotin-accepting sequences are biotinated and exported by Escherichia coli. Expression of the alkaline phosphatase fusion protein in wild type strains resulted in inefficient biotination of the fusion product. This result was due to the rapid export of the acceptor protein before biotination could occur since a very large increase in biotinated fusion protein levels was observed in strains lacking the SecB chaperone protein. The beta-lactamase fusion protein was biotinated but was only stable in strains lacking the DegP periplasmic protease. Both biotinated fusion proteins accumulated in the culture medium in strains possessing defective outer membranes. These results indicate that the export machinery can accommodate both a post-translational modification and a protein domain previously folded into its mature conformation in vivo.  相似文献   

7.
β-lactamase as a probe of membrane protein assembly and protein export   总被引:6,自引:6,他引:0  
The enzyme TEM beta-lactamase constitutes a versatile gene-fusion marker for studies on membrane proteins and protein export in bacteria. The mature form of this normally periplasmic enzyme displays readily detectable and distinctly different phenotypes when localized to the bacterial cytoplasm versus the periplasm, and thus provides a useful alternative to alkaline phosphatase for probing the topology of cytoplasmic membrane proteins. Cells producing translocated forms of beta-lactamase can be directly selected as ampicillin-resistant colonies, and consequently a beta-lactamase fusion approach can be used for positive selection for export signals, and for rapid assessment of whether any protein expressed in Escherichia coli inserts into the bacterial cytoplasmic membrane. The level of ampicillin resistance conferred on a cell by an extracytoplasmic beta-lactamase derivative depends on its level of expression, and therefore a beta-lactamase fusion approach can be used to directly select for increased yields of any periplasmic or membrane-bound gene products expressed in E. coli.  相似文献   

8.
The Tsr protein of Escherichia coli is a chemosensory transducer that mediates taxis toward serine and away from certain repellents. Like other bacterial transducers, Tsr spans the cytoplasmic membrane twice, forming a periplasmic domain of about 150 amino acids and a cytoplasmic domain of about 300 amino acids. The 32 N-terminal amino acids of Tsr resemble the consensus signal sequence of secreted proteins, but they are not removed from the mature protein. To investigate the function of this N-terminal sequence in the assembly process, we isolated translational fusions between tsr and the phoA and lacZ genes, which code for the periplasmic enzyme alkaline phosphatase and the cytoplasmic enzyme beta-galactosidase, respectively. All tsr-phoA fusions isolated code for proteins whose fusion joints are within the periplasmic loop of Tsr, and all of these hybrid proteins have high alkaline phosphatase activity. The most N-terminal fusion joint is at amino acid 19 of Tsr. Tsr-lacZ fusions were found throughout the tsr gene. The beta-galactosidase activity of the LacZ-fusion proteins varies greatly, depending on the location of the fusion joint. Fusions with low activity have fusion joints within the periplasmic loop of Tsr. The expression of these fusions is most likely reduced at the level of translation. In addition, one of these fusions markedly reduces the export and processing of the periplasmic maltose-binding protein and the outer membrane protein OmpA, but not of intact PhoA or of the outer membrane protein LamB. A temperature-sensitive secA mutation, causing defective protein secretion, stops expression of new alkaline phosphatase activity coded by a tsr-phoA fusion upon shifting to the nonpermissive temperature. The same secA mutation, even at the permissive temperature, increases the activity and the level of expression of LacZ fused to the periplasmic loop of Tsr relative to a secA+ strain. We conclude that the assembly of Tsr into the cytoplasmic membrane is mediated by the machinery responsible for the secretion of a subset of periplasmic and outer membrane proteins. Moreover, assembly of the Tsr protein seems to be closely coupled to its synthesis.  相似文献   

9.
The degP gene, required for proteolysis in the cell envelope of Escherichia coli, maps at approximately 3.5 min on the chromosome. Null mutations in degP result in temperature-sensitive growth. In certain genetic backgrounds, expression of abnormal periplasmic or inner membrane proteins (protein fusions or proteins with internal deletions) enhances the temperature-sensitive phenotype. Such growth defects were used as a selection for cloning the degP gene into Mud4042 and pACYC184 plasmid vectors, and a restriction map was determined. Analysis of deletion and insertion mutations on one of these plasmids showed that the degP gene is approximately 1.5 kilobases in size. The plasmid-encoded DegP protein had an apparent molecular weight of 50,000, as determined by maxicell analysis. Protein fusions between DegP and alkaline phosphatase had high alkaline phosphatase enzymatic activity, indicating that DegP is a periplasmic or membrane protein.  相似文献   

10.
To enable effective use of phoA gene fusions in Legionella pneumophila, we constructed MudphoA, a derivative of the mini-Mu phage Mu dII4041, which is capable of generating gene fusions to the Escherichia coli alkaline phosphatase gene (EC 3.1.3.1). Although an existing fusion-generating transposon, TnphoA, has been a useful tool for studying secreted proteins in other bacteria, this transposon and other Tn5 derivatives transpose inefficiently in Legionella pneumophila, necessitating the construction of a more effective vector for use in this pathogen. Using MudphoA we generated fusions to an E. coli gene encoding a periplasmic protein and to an L. pneumophila gene encoding an outer membrane protein; both sets of fusions resulted in alkaline phosphatase activity. We have begun to use MudphoA to mutate secreted proteins of L. pneumophila specifically, since this subset of bacterial proteins is most likely to be involved in host-bacterial interactions. This modified transposon may be useful for studies of other bacteria that support transposition of Mu, but not Tn5, derivatives.  相似文献   

11.
Four in-frame translational fusions to both the reporter proteins beta-galactosidase and alkaline phosphatase support a topological model of LcnD, a protein implicated in the transport of several bacteriocins from Lactococcus lactis, in which the N-terminal part is located intracellularly and one transmembrane helix spans the cytoplasmic membrane.  相似文献   

12.
The Escherichia coli uhpT protein catalyzes the active transport of sugar-phosphates by an obligatory exchange mechanism. To examine its transmembrane topology, we isolated a collection of uhpT-phoA fusions encoding hybrid proteins of different lengths from the N terminus of UhpT fused to alkaline phosphatase by using transposon TnphoA. These fusions displayed different levels of alkaline phosphatase activity, although comparable levels of full-length UhpT-PhoA proteins were produced in maxicells of both high- and low-activity fusions. The full-length protein species were unstable and were degraded to the size of the alkaline phosphatase moiety in the case of a high-activity fusion or to small fragments in the case of a low-activity fusion. The enzyme activity present in low-activity fusions appeared to result from export of a small proportion of the fusion proteins to the periplasmic space. Although fusions were not obtained in all predicted extramembranous loops, the deduced topology of UhpT was consistent with a model of 12 membrane-spanning regions oriented with the amino and carboxyl termini in the cytoplasm.  相似文献   

13.
J K Broome-Smith  B G Spratt 《Gene》1986,49(3):341-349
A plasmid vector, pJBS633, that facilitates the construction of translational fusions of genes of interest to the coding region of the mature form of TEM beta-lactamase has been developed. Transformants containing in-frame fusions can be identified by their ability to grow when plated at high inocula on agar containing ampicillin (Ap). The cellular location of the beta-lactamase moiety of the fusion proteins can then be determined since only those that direct the translocation of the beta-lactamase across the cytoplasmic membrane to the periplasm result in the ability of individual cells of Escherichia coli to form isolated colonies in the presence of Ap. Conversely, those fusion proteins in which the beta-lactamase moiety remains cytoplasmic do not protect individual cells against Ap. Transformants expressing the latter class of fusion proteins can, however, be identified when plated at high inocula since, as cells start to lyse, the cytoplasmic beta-lactamase activity is released and provides Ap resistance to the surrounding cells. The vector contains the origin of replication of f1 phage so that single-stranded plasmid DNA can be obtained in the appropriate orientation to allow sequencing across the fusion junction using a universal primer complementary to the start of the coding region of mature TEM beta-lactamase. pJBS633 should be useful as a general vector for the construction of beta-lactamase fusions and, in particular, for the analysis of protein export signals and the determination of the organisation of proteins in the E. coli cytoplasmic membrane.  相似文献   

14.
Escherichia coli alpha-ketoglutarate permease (KgtP) is a 432-amino-acid protein that symports alpha-ketoglutarate and protons. KgtP was predicted to contain 12 membrane-spanning domains on the basis of a calculated hydropathy profile. The membrane topology model of KgtP was analyzed by using kgtP-phoA gene fusions and measuring alkaline phosphatase activities in cells expressing the chimeric proteins. Comparisons of the phosphatase activity levels and the locations of the KgtP-PhoA junctions are consistent with the predicted membrane topology model of KgtP.  相似文献   

15.
Using recombinant DNA techniques, we have constructed phoA-lacZ gene fusions. Two of the fusions encode hybrid proteins containing approximately half of alkaline phosphatase at the amino terminus joined to beta-galactosidase. For the one fusion strain analyzed in detail, it was shown that the hybrid protein is found in the membrane fraction of cells. In its membrane location, the beta-galactosidase activity of the hybrid is not sufficient to support cell growth on lactose. Unexpectedly, fusions containing phoA and lacZ joined in the wrong translational reading frame were also obtained. These fusions direct the phosphate-regulated synthesis of beta-galactosidase, apparently via a translation restart mechanism. Thus, when gene fusions are constructed, the presence of properly regulated beta-galactosidase activity does not necessarily indicate that a hybrid protein is being produced.  相似文献   

16.
Gene fusions between the cholera toxin structural genes and phoA, which encodes bacterial alkaline phosphatase, were identified after TnphoA mutagenesis of the cloned genes in Escherichia coli and were then mobilized into Vibrio cholerae. The activities of the hybrid proteins were detectable in V. cholerae and suggested that, like cholera toxin, they were secreted beyond the cytoplasm. To extend the utility of TnphoA to identify additional genetic export signals in V. cholerae and other gram-negative bacteria, TnphoA delivery vectors utilizing broad-host-range plasmids were developed. By using V. cholerae as a model system, insertion mutants carrying active phoA gene fusions were identified as colonies expressing alkaline phosphatase, which appeared blue on agar containing the indicator 5-bromo-4-chloro-3-indolyl phosphate. Since alkaline phosphatase is active only upon export from the cytoplasm, PhoA+ colonies resulting from the mutagenesis procedure were enriched for insertions in genes that encode secreted proteins. Insertion mutations were identified in the gene encoding a major outer membrane protein, OmpV, and in tcpA, which encodes a pilus (fimbrial) subunit. Mutant strains harboring chromosomal insertions isolated in this manner can be used to assess the role of the corresponding inactivated gene products on survival of V. cholerae in vivo. The expression of the hybrid proteins as determined by measuring alkaline phosphatase activity also allowed the convenient study of virulence gene expression.  相似文献   

17.
S Long  S McCune    G C Walker 《Journal of bacteriology》1988,170(9):4257-4265
We have developed a system for using TnphoA (TnphoA is Tn5 IS50L::phoA), which generates fusions to alkaline phosphatase (C. Manoil and J. Beckwith, Proc. Natl. Acad. Sci. USA 82:8129-8133, 1985), in Rhizobium meliloti. Active fusions expressing alkaline phosphatase can arise only when this transposon inserts in genes encoding secreted or membrane-spanning proteins. By confining our screening to 1,250 TnphoA-generated mutants of R. meliloti that expressed alkaline phosphatase, we efficiently identified 25 symbiotically defective mutants, all of which formed ineffective (Fix-) nodules on alfalfa. Thirteen of the mutants were unable to synthesize an acidic exopolysaccharide (exo::TnphoA) that is required for nodule invasion. Twelve of the mutations created blocked at later stages of nodule development (fix::TnphoA) and were assigned to nine symbiotic loci. One of these appeared to be a previously undescribed locus located on the pRmeSU47a megaplasmid and to encode a membrane protein. Two others were located on the pRmeSU47b megaplasmid: one was a new locus which was induced by luteolin and encoded a membrane protein, and the other was dctA, the structural gene for dicarboxylic acid transport. The remaining six loci were located on the R. meliloti chromosome. One of these was inducible by luteolin and encoded a membrane protein which determined lipopolysaccharide structure. Three additional chromosomal loci also appeared to encode membrane proteins necessary for symbiosis. The remaining two chromosomal loci encoded periplasmic proteins required for symbiosis.  相似文献   

18.
A topology of the Escherichia coli leader peptidase has been previously proposed on the basis of proteolytic studies. Here, a collection of alkaline phosphatase fusions to leader peptidase is described. Fusions to the periplasmic domain of this protein exhibit high alkaline phosphatase activity, while fusions to the cytoplasmic domain exhibit low activity. Elements within the cytoplasmic domain are necessary to stably anchor alkaline phosphatase in the cytoplasm. The amino-terminal hydrophobic segment of leader peptidase acts as a weak export signal for alkaline phosphatase. However, when this segment is preceded by four lysines, it acts as a highly efficient export signal. The coherence of in vitro studies with alkaline phosphatase fusion analysis of the topology of leader peptidase further indicates the utility of this genetic approach to membrane protein structure and insertion.  相似文献   

19.
Hybrid proteins were constructed in which C-terminal regions of the bacterial cell surface and extracellular protein pullulanase were replaced by the mature forms of the normally periplasmic Escherichia coli proteins beta-lactamase or alkaline phosphatase. In E. coli strains expressing all pullulanase secretion genes, pullulanase-beta-lactamase hybrid protein molecules containing an N-terminal 834-amino-acid pullulanase segment were efficiently and completely transported to the cell surface. This hybrid protein remained temporarily anchored to the cell surface, presumably via fatty acids attached to the N-terminal cysteine of the pullulanase segment, and was subsequently specifically released into the medium in a manner indistinguishable from that of pullulanase itself. These results suggest that the C-terminal extremity of pullulanase lacks signal(s) required for export to the cell surface. When beta-lactamase was replaced by alkaline phosphatase, the resulting hybrid also became exposed at the cell surface, but exposition was less efficient and specific release into the medium was not observed. We conclude that proteins that do not normally cross the outer membrane can be induced to do so when fused to a permissive site near the C-terminus of pullulanase.  相似文献   

20.
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号