首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

2.
Tyrosyl-DNA phosphodiesterase I (Tdp1) is involved in the repair of DNA lesions created by topoisomerase I in vivo. Tdp1 is a member of the phospholipase D (PLD) superfamily of enzymes and hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Here, we use synthetic 3'-(4-nitro)phenyl, 3'-(4-methyl)phenyl, and 3'-tyrosine phosphate oligonucleotides to study human Tdp1. Kinetic analysis of human Tdp1 (hTdp1) shows that the enzyme has nanomolar affinity for all three substrates and the overall in vitro reaction is diffusion-limited. Analysis of active-site mutants using these modified substrates demonstrates that hTdp1 uses an acid/base catalytic mechanism. The results show that histidine 493 serves as the general acid during the initial transesterification, in agreement with hypotheses based on previous crystal structure models. The results also argue that lysine 495 and asparagine 516 participate in the general acid reaction, and the analysis of crystal structures suggests that these residues may function in a proton relay. Together with previous crystal structure data, the new functional data provide a mechanistic understanding of the conserved histidine, lysine and asparagine residues found among all PLD family members.  相似文献   

3.
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromofuscus PLD. Based on attempts at sequence alignment with other known Ca(2+)-independent PLD enzymes from Streptomyces species, we mutated five histidine residues (His72, His171, His187, His200, His226) that could be part of variants of an HKD motif. Only H187A and H200A showed dramatically reduced activity. However, mutation of these histidine residues to alanine also significantly altered the secondary structure of PLD. Asparagine replacements at these positions yielded enzymes with structure and activity similar to the recombinant wild-type PLD. The extent of phosphatidic acid (PA) activation of PC hydrolysis by the recombinant PLD enzymes differed in magnitude from PLD purified from S. chromofuscus culture medium (a 2-fold activation rather than 4-5-fold). One of the His mutants, H226A, showed a 12-fold enhancement by PA, suggesting this residue is involved in the kinetic activation. Another notable difference of this bacterial PLD from others is that it has a single cysteine (Cys123); other Streptomyces Ca(2+)-independent PLDs have eight Cys involved in intramolecular disulfide bonds. Both C123A and C123S, with secondary structure and stability similar to recombinant wild-type PLD, exhibited specific activity reduced by 10(-5) and 10(-4). The Cys mutants still bound Ca(2+), so that it is likely that this residue is part of the active site of the Ca(2+)-dependent PLD. This would suggest that S. chromofuscus PLD is a member of a new class of PLD enzymes.  相似文献   

4.
Phospholipase D (PLD) is a key enzyme involved in numerous processes in all living organisms. Hydrolysis of phospholipids by PLD allows the release of phosphatidic acid which is a crucial intermediate of multiple pathways and signaling reactions, including tumorigenesis in mammals and defense responses in plants. One common feature found in the plant alpha isoform (PLDα), in some PLD from microbes and in all PLD from eukaryotes, is a duplicated motif named HKD involved in the catalysis. However, other residues are strictly conserved among these organisms and their role remains obscure. To gain further insights into PLD structure and the role of these conserved residues, we first looked for all the plant PLDα sequences available in public databases. With >200 sequences retrieved, a generic sequence was constructed showing that 138 residues are strictly conserved among plant PLDα, with some of them identical to residues found in mammalian PLDs. Using site-directed mutagenesis of the PLDα from Arabidopsis thaliana, we demonstrated that mutation of some of these residues abolished the PLD activity. Moreover, mutation of the residues around both HKD motifs enabled us to re-define the consensus sequence of these motifs. By sequential deletions of the N-terminal extremity, the minimum length of the domain required for catalytic activity was determined. Overall, this work furthers our understanding of the structure of eukaryotic PLDs and it may lead to the discovery of new regions involved in the catalytic reaction that could be targeted by small molecule modulators of PLDs.  相似文献   

5.
A phospholipase D (PLD) superfamily was recently identified that contains proteins of highly diverse functions with the conserved motif HXKX4DX6G(G/S). The superfamily includes a bacterial nuclease, human and plant PLD enzymes, cardiolipin synthases, phosphatidylserine synthases, and the murine toxin from Yersinia pestis (Ymt). Ymt is particularly effective as a prototype for family members containing two conserved motifs, because it is smaller than many other two-domain superfamily enzymes, and it can be overexpressed. Large quantities of pure recombinant Ymt allowed the formation of diffraction-quality crystals for x-ray structure determination. Dimeric Ymt was shown to have PLD-like activity as demonstrated by the hydrolysis of phosphatidylcholine. Ymt also used bis(para-nitrophenol) phosphate as a substrate. Using these substrates, the amino acids essential for Ymt function were determined. Specifically, substitution of histidine or lysine in the conserved motifs reduced the turnover rate of bis(para-nitrophenol) phosphate by a factor of 10(4) and phospholipid turnover to an undetectable level. The role of the conserved residues in catalysis was further defined by the isolation of a radiolabeled phosphoenzyme intermediate, which identified a conserved histidine residue as the nucleophile in the catalytic reaction. Based on these data, a unifying two-step catalytic mechanism is proposed for this diverse family of enzymes.  相似文献   

6.
Tyrosyl-DNA phosphodiesterase (Tdp1) catalyzes the hydrolysis of a phosphodiester bond between a tyrosine residue and a DNA 3' phosphate. The enzyme appears to be responsible for repairing the unique protein-DNA linkage that occurs when eukaryotic topoisomerase I becomes stalled on the DNA in the cell. The 1.69 A crystal structure reveals that human Tdp1 is a monomer composed of two similar domains that are related by a pseudo-2-fold axis of symmetry. Each domain contributes conserved histidine, lysine, and asparagine residues to form a single active site. The structure of Tdp1 confirms that the protein has many similarities to the members of the phospholipase D (PLD) superfamily and indicates a similar catalytic mechanism. The structure also suggests how the unusual protein-DNA substrate binds and provides insights about the nature of the substrate in vivo.  相似文献   

7.
Almost all enzyme-catalysed phosphohydrolytic or phosphoryl transfer reactions proceed through a five-coordinated phosphorus transition state. This is also true for the phospholipase D superfamily of enzymes, where the active site usually is made up of two identical sequence repeats of an HKD motif, positioned around an approximate 2-fold axis, where the histidine and lysine residues are essential for catalysis. An almost complete reaction pathway has been elucidated by a series of experiments where crystals of phospholipase D from Streptomyces sp. strain PMF (PLD(PMF)) were soaked for different times with (i) a soluble poor, short-chained phospholipid substrate and (ii) with a product. The various crystal structures were determined to a resolution of 1.35-1.75 A for the different time-steps. Both substrate and product-structures were determined in order to identify the different reaction states and to examine if the reaction actually terminated on formation of phosphatidic acid (the true product of phospholipase D action) or could proceed even further. The results presented support the theory that the phospholipase D superfamily shares a common reaction mechanism, although different family members have very different substrate preferences and perform different catalytic reactions. Results also show that the reaction proceeds via a phosphohistidine intermediate and provide unambiguous identification of a catalytic water molecule, ideally positioned for apical attack on the phosphorus and consistent with an associative in-line phosphoryl transfer reaction. In one of the experiments an apparent five-coordinate phosphorus transition state is observed.  相似文献   

8.
The catalytic center of an archaeal Type 2 RNase H has been identified by a combination of X-ray crystallographic and mutational analyses. The crystal structure of the Type 2 RNase H from Thermococcus kodakaraensis KOD1 has revealed that the N-terminal major domain adopts the RNase H fold, despite the poor sequence similarity to the Type 1 RNase H. Mutational analyses showed that the catalytic reaction requires four acidic residues, which are well conserved in the Type 1 RNase H and the members of the polynucleotidyl transferase family. Thus, the Type 1 and Type 2 RNases H seem to share a common catalytic mechanism, except for the requirement of histidine as a general base in the former enzyme. Combined with the results from deletion mutant analyses, the structure suggests that the C-terminal domain of the Type 2 RNase H is involved in the interaction with the DNA/RNA hybrid.  相似文献   

9.
The MACiE database contains 223 distinct step-wise enzyme reaction mechanisms and holds representatives from each EC sub-subclass where there is a crystal structure and sufficient evidence in the literature to support a mechanism. Each catalytic step of every reaction sequence in MACiE is fully annotated so that it includes the function of the catalytic residues involved in the reaction and the mechanism by which substrates are transformed into products. Using MACiE as a knowledge base, we have seen that the top 10 most catalytic residues are histidine, aspartate, glutamate, lysine, cysteine, arginine, serine, threonine, tyrosine and tryptophan. Of these only seven (cysteine, histidine, aspartate, lysine, serine, threonine and tyrosine) dominate catalysis and provide essentially five functional roles that are essential. Stabilisation is the most common and essential role for all classes of enzyme, followed by general acid/base (proton acceptor and proton donor) functionality, with nucleophilic addition following closely behind (nucleophile and nucleofuge). We investigated the occurrence of these residues in MACiE and the Catalytic Site Atlas and found that, as expected, certain residue types are associated with each functional role, with some residue types able to perform diverse roles. In addition, it was seen that different EC classes of enzyme have a tendency to employ different residues for catalysis. Further, we show that whilst the differences between EC classes in catalytic residue composition are not immediately obvious from the general classes of Ingold mechanisms, there is some weak correlation between the mechanisms involved in a given EC class and the functions that the catalytic amino acid residues are performing. The analysis presented here provides a valuable insight into the functional roles of catalytic amino acid residues, which may have applications in many aspects of enzymology, from the design of novel enzymes to the prediction and validation of enzyme reaction mechanisms.  相似文献   

10.
Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure.  相似文献   

11.
Synthesis of the O:54 O antigen of Salmonella enterica is initiated by the nonprocessive glycosyl transferase WbbE, assigned to family 2 of the glycosyl transferase enzymes (GT2). GT2 enzymes possess a characteristic N-terminal domain, domain A. Based on structural data from the GT2 representative SpsA (S. J. Charnock and G. J. Davies, Biochemistry 38:6380-6385, 1999), this domain is responsible for nucleotide binding. It possesses two invariant Asp residues, the first forming a hydrogen bond to uracil and the second coordinating a Mn(2+) ion. Site-directed replacement of Asp41 (D41A) of WbbE, the analogue of the first Asp residue of SpsA, revealed that this is not required for activity. WbbE possesses three Asp residues near the position analogous to the second conserved residue. Whereas D95A reduced WbbE activity, activity in D93A and D96A mutants was abrogated, suggesting that either D93 or D96 may coordinate the Mn(2+) ion. Our studies also identified a C-terminal region of sequence conservation in 22 GT2 members, including WbbE. SpsA was not among these. This region is characterized by an ED(Y) motif. The Glu and Asp residues of this motif were individually replaced in WbbE. E180D in WbbE had greatly reduced activity, and an E180Q replacement completely abrogated activity; however, D181E had no effect. E180 is predicted to reside on a turn. Combined with the alignment of the motif with potential catalytic residues in the GT2 enzymes ExoM and SpsA, we speculate that E180 is the catalytic residue of WbbE. Sequence and predicted structural divergence in the catalytic region of GT2 members suggests that this is not a homogeneous family.  相似文献   

12.
The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.  相似文献   

13.
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.  相似文献   

14.
The alpha/beta‐hydrolases are a family of acid‐base‐nucleophile catalytic triad enzymes with a common fold, but using a wide variety of substrates, having different pH optima, catalyzing unique catalytic reactions and often showing improved chemical and thermo stability. The ABH enzymes are prime targets for protein engineering. Here, we have classified active sites from 51 representative members of 40 structural ABH fold families into eight distinct conserved geometries. We demonstrate the occurrence of a common structural motif, the catalytic acid zone, at the catalytic triad acid turn. We show that binding of an external ligand does not change the structure of the catalytic acid zone and both the ligand‐free and ligand‐bound forms of the protein belong to the same catalytic acid zone subgroup. We also show that the catalytic acid zone coordinates the position of the catalytic histidine loop directly above its plane, and consequently, fixes the catalytic histidine in a proper position near the catalytic acid. Finally, we demonstrate that the catalytic acid zone plays a key role in multi‐subunit complex formation in ABH enzymes, and is involved in interactions with other proteins. As a result, we speculate that each of the catalytic triad residues has its own supporting structural scaffold, similar to the catalytic acid zone, described above, which together form the extended catalytic triad motif. Each scaffold coordinates the function of its respective catalytic residue, and can even compensate for the loss of protein function, if the catalytic amino acid is mutated.  相似文献   

15.
Khaleeli N  Busby RW  Townsend CA 《Biochemistry》2000,39(29):8666-8673
The facial 2-His-1-carboxylate (Asp/Glu) motif has emerged as the structural paradigm for metal binding in the alpha-ketoglutarate (alpha-KG)-dependent nonheme iron oxygenases. Clavaminate synthase (CS2) is an unusual member of this enzyme family that mediates three different, nonsequential reactions during the biosynthesis of the beta-lactamase inhibitor clavulanic acid. In this study, covalent modification of CS2 by the affinity label N-bromoacetyl-L-arginine near His297, which is within the HRV signature of a His-2 motif, suggested this histidine could play a role in metal coordination. However, site-specific mutagenesis of eight His residues to Gln identified His145 and His280, but not His297, as involved in iron binding. Weak homology of His145 and its flanking sequence and the presence of Glu147 fitting the canonical acidic residue of the His-Xaa-Asp/Glu signature are consistent with His145 being a coordinating ligand (His-1). His280 and its flanking sequence, which give poor alignments to most other members of this enzyme family, are similar among a subset of these enzymes and notably to CarC, an apparent oxygenase involved in carbapenem biosynthesis. The separation of His145 and His280 is more than twice that seen in the current 2-His-1-carboxylate model and may define an alternative iron binding motif, which we propose as His-3. These ligand assignments, based on kinetic measurements of both oxidative cyclization/desaturation and hydroxylation assays, establish that no histidine ligand switching occurs during the catalytic cycle. These results are confirmed in a recent X-ray crystal structure of CS1, a highly similar isozyme of CS2 (81% identical). Tyr299, Tyr300 in CS2 modified by N-bromoacetyl-L-arginine, is hydrogen bonded to Glu146 (Glu147 in CS2) in this structure and well-positioned for reaction with the affinity label.  相似文献   

16.
The gene that encodes phospholipase D (PLD) from Streptoverticillium cinnamoneum contains three consensus regions (Region I, II and IV as shown in Fig. 1A) that are conserved among the PLD superfamily. The glycine-glycine (GG) motif in Region I and the glycine-serine (GS) motif in Region IV are also conserved in the PLD superfamily. These (GG and GS) motifs are located 7 residues downstream from each HKD motif. In an investigation of fifteen GG/GS motif mutants, generated as fusion proteins with maltose-binding protein (MBP-PLDs), three highly active mutants were identified. Three of the mutants (G215S, G216S, and G216S-S489G) contained a serine residue in the GG motif, and exhibited approximately a 9-27-fold increased transphosphatidylation activity to DPPC compared with recombinant wild type MBP-PLD. When heat stability was compared between three mutants and the recombinant wild type, only G216S-S489G showed heat labile properties. It appears that the 489th serine residue in the GS motif also contributes to the thermal stability of the enzyme. In addition, the GG/GS motif was very close to the active center residue, including two HKD motifs, as shown by computer modeling. The findings suggest that the GG/GS motif of PLD is a key motif that affects catalytic function and enzymatic stability.  相似文献   

17.
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.  相似文献   

18.
The caspase-activated DNase (CAD) is an important nuclease involved in apoptotic DNA degradation. Results of a sequence comparison of CAD proteins with beta beta alpha-Me-finger nucleases in conjunction with a mutational and chemical modification analysis suggest that CAD proteins constitute a new family of beta beta alpha-Me-finger nucleases. Nucleases of this family have widely different functions but are characterized by a common active-site fold and similar catalytic mechanisms. According to our results and comparisons with related nucleases, the active site of CAD displays features that partly resemble those of the colicin E9 and partly those of the T4 endonuclease VII active sites. We suggest that the catalytic mechanism of CAD involves a conserved histidine residue, acting as a general base, and another histidine as well as an aspartic acid residue required for cofactor binding. Our findings provide a first insight into the likely active-site structure and catalytic mechanism of a nuclease involved in the degradation of chromosomal DNA during programmed cell death.  相似文献   

19.
E2 conjugating enzymes are the central enzymes in the ubiquitination pathway and are responsible for the transfer of ubiquitin and ubiquitin-like proteins on to target substrates. The secondary structural elements of the catalytic domain of these enzymes is highly conserved, including the sequence conservation of a three-residue HPN (His-Pro-Asn) motif located upstream of the active-site cysteine residue used for ubiquitin conjugation. Despite the vast structural knowledge of E2 enzymes, the catalytic mechanism of these enzymes remains poorly understood, in large part due to variation in the arrangements of the residues in the HPN motif in existing E2 structures. In the present study, we used the E2 enzyme HIP2 to probe the structures of the HPN motif in several other E2 enzymes. A combination of chemical-shift analysis, determination of the histidine protonation states and amide temperature coefficients were used to determine the orientation of the histidine ring and hydrogen-bonding arrangements within the HPN motif. Unlike many three-dimensional structures, we found that a conserved hydrogen bond between the histidine imidazole ring and the asparagine backbone amide proton, a common histidine protonation state, and a common histidine orientation exists for all E2 enzymes examined. These results indicate that the histidine within the HPN motif is orientated to structurally stabilize a tight turn motif in all E2 enzymes and is not orientated to interact with the asparagine side chain as proposed in some mechanisms. These results suggest that a common catalysis mechanism probably exists for all E2 conjugating enzymes to facilitate ubiquitin transfer.  相似文献   

20.
Oligosaccharyltransferase (OST) catalyzes the transfer of an oligosaccharide from a lipid donor to an asparagine residue in nascent polypeptide chains. In the bacterium Campylobacter jejuni, a single-subunit membrane protein, PglB, catalyzes N-glycosylation. We report the 2.8 Å resolution crystal structure of the C-terminal globular domain of PglB and its comparison with the previously determined structure from the archaeon Pyrococcus AglB. The two distantly related oligosaccharyltransferases share unexpected structural similarity beyond that expected from the sequence comparison. The common architecture of the putative catalytic sites revealed a new catalytic motif in PglB. Site-directed mutagenesis analyses confirmed the contribution of this motif to the catalytic function. Bacterial PglB and archaeal AglB constitute a protein family of the catalytic subunit of OST along with STT3 from eukaryotes. A structure-aided multiple sequence alignment of the STT3/PglB/AglB protein family revealed three types of OST catalytic centers. This novel classification will provide a useful framework for understanding the enzymatic properties of the OST enzymes from Eukarya, Archaea, and Bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号