首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical activity of the right and left sensorimotor and premotor cortical areas and right and left medulary reticular formation was recorded during "animal hypnosis" in rabbits. In this state, the spectral power of potentials (predominantly, in the delta-range) recorded from the left reticular formation was higher than that recorded from the right side. The value of the function of coherence between the right and left reticular recordings was decreased to 0.1-0.2 in the whole frequency range. The tight-side intrahemispheric coherence between the activities recorded from the sensorimotor cortex and reticular formation was higher than respective left-side values, whereas the coherent relations between the activities recorded from the reticular formation and premotor cortex were not changed (as compared to nonhypnotic state).  相似文献   

2.
The electrical activity of the left and right sensorimotor cortex and left and right dorsal hippocampus (CA3 fields) was recorded during "animal hypnosis" in rabbits. The "animal hypnosis" produced asymmetry in the spectral power of the hippocampal electrical activity due to an increase in the power of delta 1, delta 2, and theta 1 components in the left-hippocampus and decrease in the spectral power in the same ranges in the right-hippocampus. Hemispheric asymmetry in the electrical activity during the "animal hypnosis" was also expressed in the indices of coherence between the sensorimotor cortex and hippocampus. EEG coherence between the left sensorimotor cortex and left hippocampus in the delta 1, theta 1, and theta 2 ranges was higher than that between the right-side structures.  相似文献   

3.
The study of intercentral and interhemispheric relations of the electrical activity of the cerebral cortex during formation and functioning of winking dominant, by the method of spectral-correlation analysis, has shown that the dominant focus is characterized by an increase of spectrum power in the range of delta-frequencies and a raise of coherence level of potentials in the same range that leads to the appearance of interhemispheric asymmetry according to these parameters. Appearance of the dominant state in the opposite hemisphere is accompanied by a reconstruction of the electrical activity characteristic of dominant focus.  相似文献   

4.
In healthy subjects (11 right-handed men) reorganization was studied of intra- and interhemispheric correlation of the electrical brain activity at transition from the state of alertness to drowsiness. At the lowering of alertness level, the coherence of hemispheres symmetrical points changed not abruptly, with a tendency towards an increase at differently directed character of changes of combinations of separate physiological rhythms ranges. Comparison of the EEG coherence changes within the right and left hemispheres revealed a greater reactivity of the left (dominant) hemisphere. The reduction of the predominance (observed in the dominant hemisphere in alertness) of the degree of EEG conjunction, at transition to drowsiness, leads to smoothing of interhemispheric asymmetry in the organization of electrical brain processes.  相似文献   

5.
The dynamics of changes in intercentral relations of electrical activity of the sensorimotor and premotor zones of both hemispheres and the ventroposterolateral (VPL) nucleus of the left and right thalamus at formation of motor dominant under the action of the DC anode in the rabbit sensorimotor cortex was studied by the method of spectral-correlation analysis. It is shown that in the much less than dominant much greater than motor analyzer (the sensorimotor cortex and VPL) highly coherent connections of electrical processes are formed in the delta-range with conjugated lowering of biopotential connections between the structures of the motor analyzer of the much less than nondominant much greater than part of the brain. At the same time differently directed connections of electrical processes are formed between the structures of the motor analyzer, and between the premotor cortex and focus area. Thus, during formation of the much less than polarization much greater than dominant, a new structure of the intercentral relations of electrical processes is established not only in the much less than dominant much greater than but also in the other half of the brain.  相似文献   

6.
By spectral-correlative analysis the dynamics was studied of structural changes of coherent relations of the electrical activity of the sensorimotor cortex and medial geniculate body (MGB) of the rabbit under motor polarization dominant created by the action of DC anode on the sensorimotor cortex area. It was shown, that in the power spectra of the MGB, besides the increase of the delta-region components in interstimulus intervals at the dominant, during the action of the sound stimulus a distinct maximum appeared in the alpha-rhythm range of the electrical activity of MGB of the "dominant" hemisphere. The coherence increase of the delta-range of the MGB and the sensorimotor cortex electrical activity in the "dominant" part of the brain was manifested exclusively in the period of sound stimulus action.  相似文献   

7.
After unilateral stroke, the dorsal premotor cortex (PMd) in the intact hemisphere is often more active during movement of an affected limb. Whether this contributes to motor recovery is unclear. Functional magnetic resonance imaging (fMRI) was used to investigate short-term reorganization in right PMd after transcranial magnetic stimulation (TMS) disrupted the dominant left PMd, which is specialized for action selection. Even when 1 Hz left PMd TMS had no effect on behavior, there was a compensatory increase in activity in right PMd and connected medial premotor areas. This activity was specific to task periods of action selection as opposed to action execution. Compensatory activation changes were both functionally specific and anatomically specific: the same pattern was not seen after TMS of left sensorimotor cortex. Subsequent TMS of the reorganized right PMd did disrupt performance. Thus, this pattern of functional reorganization has a causal role in preserving behavior after neuronal challenge.  相似文献   

8.
The influence of scopolamine (1 mg/kg, i.p.) on the spatial organization of the neocortical electrical activity was studied in rats. A decrease in the spectral power and coherence of brain potentials in the range of the dominant theta-rhythm peak (6.00-7.25 Hz) and their increase in the adjacent low-frequency band were observed. Both indices were decreased in the wide beta band (19.00-30.00 Hz). The described changes took place over the whole areas of the right hemisphere and parieto-temporal region of the left hemisphere. The obtained results are discussed with respect to the role of the cholinergic brain system in the higher nervous activity.  相似文献   

9.
By the method of spectral-coherent analysis, the intercentral relations were studied of the electrical activity of the sensorimotor and premotor cortices and of CAs field of the dorsal hippocampus of both hemispheres during the motor polarization dominant, created by the action of the direct current on the rabbits sensorimotor cortical area. The formation was shown of a new structure of the intercentral relations of electrical activity of the sensorimotor cortex and CA3 of the dorsal hippocampus. It should be noted that the dominant optimum and its inhibition are characterized by different interhippocampal relations: at the optimum a low range of the theta-rhythm is highly coherent while at the activation of "the non-dominant" hemisphere--a high range.  相似文献   

10.
By the method of spectral-correlation analysis, the dynamics was studied of changes in intercentral relations of electrical activity in the sensorimotor and premotor cortices of both cerebral hemispheres during formation, course, recovery and extinction of motor dominant created by a single action of DC anode in rabbits sensorimotor cortex. The motor dominant is capable to be preserved during the test for a long time after DC switching off and to recover in subsequent days under the action of testing stimuli. It should be noted that the recovery of the structure of intercentral relations of electrical brain activity, characteristic of dominant state, takes place much earlier than the motor "dominant" reaction.  相似文献   

11.
Summate electrical activity of the rabbit neocortex during formation of drinking excitation was studied by means of mathematical analysis. It is shown that the change of the electrical activity depends on the level of drinking excitability created by various duration of water deprivation (24-48 h) and is expressed in a generalized lowering of potentials amplitude without frequency change. Spectro-correlative EEG analysis showed that lowering of spectrum power took place within the whole analyzed frequencies range. Besides, an increase took place of interconnections of the cortical electrical processes, estimated by coherence function. It may by suggested that the manifested reconstruction of spectro-correlative characteristics of the neocortical biopotentials reflects a formation of motivational excitation establishing optimal level of cortex functioning.  相似文献   

12.
Inter- and intrahemispheric relations of electrical activity of the pre-motor, sensorimotor (representation of forelimb and blinking) and visual zones of rabbit's cerebral cortex in calm alertness was studied by method of spectral-correlative analysis. Mean coherence levels of the EEG of tested hemispheric symmetric points and symmetric pairs of leads in the left and right hemispheres were characterized by a high temporal stability in the state of calm alertness and during sensory stimulation. A comparison of mean coherence values of EEG in symmetric leads, revealed a tendency to left-side dominance of statistical bonds of electrical processes. A tendency was shown towards interhemispheric asymmetry by mean parameters of EEG power spectra: the left hemisphere of the rabbit is characterized by a lower mean frequency of electrical activity and a more narrow effective frequency of the spectrum.  相似文献   

13.
The spectral-correlation analysis of biopotentials in the cortex and some other brain structures (the anteroventral thalamic nucleus, dorsal hippocampus, lateral geniculate body, mid-brain reticular formation), in chronic experiments on alert rabbits, revealed that during electrical stimulation of thalamic mid-line nuclei within the ranges of 1-3, 4-7 and 8-10 c/s, there occured a rearrangement of the EEG frequencies; a dominant, narrow-band peak at the stimulation frequency, appeared. The coherence of the biopotentials of different cortical areas, of the cortex and subcortical formations increased during the stimulation at the frequency of the stimulation, reaching maximum values between the potentials of the visual and sensorimotor cortical areas.  相似文献   

14.
Writing is a highly skilled and overlearned movement. In patients suffering from writer's cramp, a focal task-induced dystonia, writing is impaired or even impossible due to involuntary muscle contractions and abnormal posture, which occur as soon as the person picks up a pen or within writing a few words. The underlying pathophysiological mechanisms of this movement disorder are not fully understood up to now. The aim of the present study was to unravel the oscillatory network underlying physiological writing in healthy subjects and dystonic writing in writer's cramp patients. Using whole-head magnetoencephalography (MEG) and the analysis tool dynamic imaging of coherent sources (DICS) we studied oscillatory neural coupling during writing in eleven healthy subjects and eight patients suffering from writer's cramp. Simultaneous recording of brain activity with MEG and activity of forearm and hand muscles with surface electromyography (EMG) was performed while subjects were writing for five minutes with their dominant right hand. Applying DICS sources of strongest cerebro-muscular coherence and cerebro-cerebral coherence during writing were identified, which consistently included six brain areas in both, the control subjects and the patients: contralateral and ipsilateral sensorimotor cortex, ipsilateral cerebellum, contralateral thalamus, contralateral premotor and posterior parietal cortex. Coherence between cortical sources and muscles appeared primarily in the frequency of writing movements (3-7 Hz) while coherence between cerebral sources occurred primarily around 10 Hz (8-13 Hz). Interestingly, consistent coupling between both sensorimotor cortices was observed in patients only, whereas coupling between ipsilateral cerebellum and the contralateral posterior parietal cortex was found in control subjects only. These results are consistent with the often described bilateral pathophysiology and impaired sensorimotor integration in writer's cramp patients.  相似文献   

15.
Analysis of EEG coherence performed in 60 healthy adult subjects revealed some changes in the spatial organization of cortical electrical activity produced by complication of the context of cognitive performance (increasing the working memory load). Changes in the degree of coherence of cortical potentials within the local areas were observed already at the stage of the "operative readiness" immediately after the instruction, i.e., representation of the cognitive task sequence in the explicit working memory. The observed changes were different in the anterior (decrease in the degree of coherence) and posterior (increase in coherence) areas of the cortex. Context-related increase in the local coherence was more pronounced in the temporal, parietal, and occipital areas of the left hemisphere than in the right hemisphere.  相似文献   

16.
Electrocorticograms (ECoG) were recorded using subdural grid electrodes in forearm sensorimotor cortex of six human subjects. The subjects performed three visuomotor tasks, tracking a moving visual target with a joystick-controlled cursor; threading pieces of tubing; and pinching the fingers sequentially against the thumb. Control conditions were resting and active wrist extension. ECoGs were recorded at 14 sites in hand- and arm-sensorimotor area, functionally identified with electrical stimulation. For each behavior we computed spectral power of ECoG in each site and coherence in all pair-wise sites. In three out of six subjects, gamma-oscillations were observed when the subjects started the tasks. All subjects showed widespread power decrease in the range of 11-20 Hz and power increase in the 31-60 Hz ranges during performance of the visuomotor tasks. The changes in gamma-range power were more vigorous during the tracking and threading tasks compared with the wrist extension. Coherence analysis also showed similar task-related changes in coherence estimates. In contrast to the power changes, coherence estimates increased not only in gamma-range but also at lower frequencies during the manipulative visuomotor tasks. Paired sites with significant increases in coherence estimates were located within and between sensory and motor areas. These results support the hypothesis that coherent cortical activity may play a role in sensorimotor integration or attention.  相似文献   

17.
By means of daily alimentary deprivation the dominant of hunger was created in rabbits. In response to acoustic stimuli summational swallowing and chewing movements appeared. Spectral analysis of the electrical brain activity showed the presence of primary dominant focus zone (lateral and ventromedial hypothalamus), characterized by an increase of spectrum power in delta-range while in the orbito-frontal, sensorimotor, parietal cerebral cortex, in the medial and lateral preoptic hypothalamic zones the power of biopotentials spectrum decreased within the whole analyzed frequency range.  相似文献   

18.
To estimate the EEG predictors of successful training in the voluntary control of psychomotor reactivity, 29 healthy young (aged 22.3 ± 1.5 years) musical performers were examined. The estimation was carried out in terms of segmental α-activity analysis using a biofeedback session as an example, simultaneously stimulating the EEG α rhythm and decreasing the muscle tone. On the first day of the study, the musicians followed instructions for the voluntary control of comfortable finger motor activity when performing musical passages for the right hand during a standard performance practice (without any use of an adaptive feedback). On the second day, the muscle tone and the power of the EEG α rhythm were voluntarily controlled in the context of a biofeedback technology. The analysis of the unsteady EEG segmentation showed that the dynamics of changes in the coherence and segmental characteristics of the α activity were the same for both effective biofeedback training and the standard successful performance practice: an increase in the α-rhythm coherence, an increase in the lifetime of α spindles, and a decrease in their amplitude variability. The results obtained are discussed in terms of the formation and dissociation of neuron ensembles in central mechanisms of optimal psychomotor functioning.  相似文献   

19.
Complex analysis of EEG and thermographic parameters carried out in 10 healthy subjects and 34 patients, Chernobyl clean-up participants revealed a correlation between EEG and brain temperature changes in the baseline state and during mental arithmetic. During cognitive activity the maximal increase in the average EEG coherence and temperature shifts in healthy subjects were observed in the left frontotemporal and right parietotemporal areas. In patients changes in both parameters under study were most pronounced, the interhemispheric relations were impaired. The visual analysis revealed "flat" and "hypersynchronous" EEG types in patients. The dominant pathologic activity in the betal range indicative of mediobasal and oral brainstem lesions was characteristic of the flat EEG. This type of activity was observed in 60% of patients. In these cases, a general decrease in EEG coherence and temperature was most pronounced in the left hemisphere. The hypersynchronou EEG type (40% patients) was characterized by paroxysmal activity in the theta and alpha ranges suggesting diencephalic brain lesions. In these cases, EEG coherence and temperature were more variable; changes in the right hemisphere were significant, be it increase or decrease. Our complex approach to investigation of brain activity in different aspects seems to be promising in estimation of the brain functional state both in healthy persons and patients in remote terms after exposure to radiation. The specific hemispheric temperature changes revealed in Chernobyl patients especially during cognitive activity can be the sequels of postradiation disorders of vascular neuro-circulation. The EEG findings suggest subcortical disorders at different levels (diencephalic or brainstem) and functional failure of the right or left hemispheres in remote terms after exposure to radiation.  相似文献   

20.
The perforated patch technique was used to assess the relative contribution of K(ATP) channel activity, assessed from input conductance (G(input)), and volume-sensitive anion channel activity to the induction of electrical activity in single isolated rat pancreatic beta-cells by glucose, 2-ketoisocaproate and tolbutamide. In cells equilibrated in the absence of glucose, the membrane potential was -71 mV and G(input) 3.66 nS. Addition of 8 mM glucose resulted in depolarisation, electrical activity and a reduction in G(input), reflecting an inhibition of K(ATP) channels. Cells equilibrated in 4 mM glucose had a membrane potential of -59 mV and a G(input) of 0.88 nS. In this case, a rise in glucose concentration to 8-20 mM again resulted in depolarisation and electrical activity, but caused a small increase in G(input). 2-Ketoisocaproate also evoked electrical activity and an increase in G(input), whereas electrical activity elicited by addition of tolbutamide was accompanied by reduced G(input). Increasing the concentration of glucose from 4 to 8-20 mM generated a noisy inward current at -70 mV, reflecting activation of the volume-sensitive anion channel. The mean amplitude of this current was glucose-dependent within the range 4-20 mM. Addition of 2-ketoisocaproate or a 15% hypotonic solution elicited similar increases in inward current. In contrast, addition of tolbutamide failed to induce the inward current. It is concluded that K(ATP) channel activity is most sensitive to glucose within the range 0-4 mM. At higher glucose concentrations effective in generating electrical activity, activation of the volume-sensitive anion channel could contribute towards the nutrient-induced increase in G(input).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号