首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study estimates the effect of a sea lion ( Phocarctos hookeri ) population management plan on both the sea lion population and the associated squid ( Nototodarus sloanii ) fishery. The goal of the management plan is to rebuild the sea lion population and involves closing the squid fishery when a threshold level of sea lions have been caught. The threshold level is calculated from a generalized simulation analysis which conservatively allows for adequate population rebuilding for a number of different species and populations. Our analysis uses Bayesian theory to describe uncertainty in the sea lion population site and squid catch under the implementation of the management plan. The priors represent this particular sea lion population, and the analysis represents expectation rather than calculating conservative levels of safe fishing-related mortality. The results show that the squid catch is very sensitive to whether or not the squid fishery is closed when it exceeds the threshold level for sea lion bycatch. The sea lion population size is much less sensitive to the closure of the squid fishery. For an economically important fishery, the estimates of uncertainty in both loss of catch and increase in sea lion population are needed to allow informed decision-making about trade-offs between sea lion conservation and full exploitation of the fishery.  相似文献   

2.
One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.  相似文献   

3.
The population of white-tailed sea eagles (Haliaeetus albicilla) in the Czech Republic declined dramatically during the twentieth century. None were observed in the area for more than 60 years until population recoveries were observed beginning in the 1980s. It is currently estimated that 25–30 breeding pairs of white-tailed sea eagles nest in the Czech Republic. This article analyses surveillance data from three periods between 1973 and 2003 on the occurrence and nesting of white-tailed sea eagles in the Czech Republic. We investigated recolonization of European white-tailed sea eagles in the Czech Republic in terms of migration patterns and population structures. Bird ringing data suggest the Czech population may be recovered from various areas encompassing northern Europe. Using data collected by DNA microsatellite, no population structure was revealed through Bayesian and cluster analyses with an existing Hardy–Weinberg equilibrium, which suggests mixed panmictic populations of white-tailed sea eagles in the Czech Republic and Slovakia. While analysis of genetic diversity showed no difference between recovered populations in the southeastern Czech Republic and those persisting in Slovakia, there was genetic diversity between eagles of the southeastern subpopulation and eagles in other parts of the Czech Republic. Taken together, these observations on the population structure of white-tailed sea eagles in the Czech Republic imply that other European birds contributed to the recovery of the Czech population, likely through breeding mixture with an identifiable centre in the southeastern Czech Republic.  相似文献   

4.
The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.  相似文献   

5.
Sea‐level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea‐level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea‐level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate‐driven variables could be important for understanding the potential responses of coastal species to sea‐level rise, especially for species that rely on coastal areas for reproduction.  相似文献   

6.
Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage‐structured, seasonal, nonlinear, two‐sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture‐mark‐recapture analysis, we find that seasonal sea ice concentration anomalies (SICa) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa, because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa. We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa, which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems.  相似文献   

7.
Strontium was determined in trout scales from a river where it is often difficult to distinguish between sea trout and resident brown trout by coloration or other visual marks. Sr values were compared with values in scales from brown trout caught above the anadromous stretch of the same river and in scales from a river where sea trout coloration is typical. In the first river, the Sr concentration was generally low, and as a mean only 50 ppm higher in scales from individuals classified as sea trout from the anadromous stretch than in brown trout scales from the upper stretch. There was no consistency between fish coloration and Sr concentration in scales from presumed sea trout on the anadromous stretch. Individuals with a typical sea trout coloration could have a lower concentration of Sr than individuals that were classified as uncertain sea trout by coloration. Fish weight did not seem to influence Sr levels. The mean Sr concentration in scales from the typical sea trout colored population in the second river was 2.8 times higher than that of the anadromous part of the first river. The high variability of Sr concentration in sea trout scales may be explained by differences in individual and population life history. The Sr levels reflect differences in saltwater exposure, either expressed by length of stay or concentration of salt in marine habitats. The study has shown that fish coloration is an inadequate mean to distinguish between resident and migratory trout. Nor is Sr determination of scales alone sufficient, because of low inter-group and high intra-group variability in some rivers. However, Sr values can give valuable information on individual and population migration on a large scale.  相似文献   

8.
Sea otters (Enhydra lutris kenyoni) historically occurred in Washington State, USA, until their local extinction in the early 1900s as a result of the maritime fur trade. Following their extirpation, 59 sea otters were translocated from Amchitka Island, Alaska, USA, to the coast of Washington, with 29 released at Point Grenville in 1969 and 30 released at La Push in 1970. The Washington Department of Fish and Wildlife has outlined 2 main objectives for sea otter recovery: a target population level and a target geographic distribution. Recovery criteria are based on estimates of population abundance, equilibrium abundance (K), and geographic distribution; therefore, estimates of these parameters have important management implications. We compiled available survey data for sea otters in Washington State since their translocation (1977–2019) and fit a Bayesian state-space model to estimate past and current abundance, and equilibrium abundance at multiple spatial scales. We then used forward projections of population dynamics to explore potential scenarios of range recolonization and as the basis of a sensitivity analysis to evaluate the relative influence of movement behavior, frontal wave speed, intrinsic growth, and equilibrium density on future population recovery potential. Our model improves upon previous analyses of sea otter population dynamics in Washington by partitioning and quantifying sources of estimation error to estimate population dynamics, by providing robust estimates of K, and by simulating long-term population growth and range expansion under a range of realistic parameter values. Our model resulted in predictions of population abundance that closely matched observed counts. At the range-wide scale, the population size in our model increased from an average of 21 independent sea otters (95% CI = 13–29) in 1977 to 2,336 independent sea otters (95% CI = 1,467–3,359) in 2019. The average estimated annual growth rate was 12.42% and varied at a sub-regional scale from 6.42–14.92%. The overall estimated mean K density of sea otters in Washington was 1.71 ± 0.90 (SD) independent sea otters/km2 of habitat (1.96 ± 1.04 sea otters/km2, including pups), and estimated densities within the current range correspond on average to 87% of mean sub-regional equilibrium values (range = 66–111%). The projected value of K for all of Washington was 5,287 independent sea otters (95% CI = 2,488–8,086) and 6,080 sea otters including pups (95% CI = 2,861–9,300), assuming a similar range of equilibrium densities in currently un-occupied habitats. Sensitivity analysis of simulations of sea otter population growth and range expansion suggested that mean K density estimates in currently occupied sub-regions had the largest impact on predicted future population growth (r2 = 0.52), followed by the rate of southward range expansion (r2 = 0.26) and the mean K density estimate of currently unoccupied sub-regions to the south of the current range (r2 = 0.04). Our estimates of abundance and sensitivity analysis of simulations of future population abundance and geographic range help determine population status in relation to population recovery targets and identify the most influential parameters affecting future population growth and range expansion for sea otters in Washington State.  相似文献   

9.
The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the na?veté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.  相似文献   

10.
The Arctic is undergoing rapid and accelerating change in response to global warming, altering biodiversity patterns, and ecosystem function across the region. For Arctic endemic species, our understanding of the consequences of such change remains limited. Spectacled eiders (Somateria fischeri), a large Arctic sea duck, use remote regions in the Bering Sea, Arctic Russia, and Alaska throughout the annual cycle making it difficult to conduct comprehensive surveys or demographic studies. Listed as Threatened under the U.S. Endangered Species Act, understanding the species response to climate change is critical for effective conservation policy and planning. Here, we developed an integrated population model to describe spectacled eider population dynamics using capture–mark–recapture, breeding population survey, nest survey, and environmental data collected between 1992 and 2014. Our intent was to estimate abundance, population growth, and demographic rates, and quantify how changes in the environment influenced population dynamics. Abundance of spectacled eiders breeding in western Alaska has increased since listing in 1993 and responded more strongly to annual variation in first‐year survival than adult survival or productivity. We found both adult survival and nest success were highest in years following intermediate sea ice conditions during the wintering period, and both demographic rates declined when sea ice conditions were above or below average. In recent years, sea ice extent has reached new record lows and has remained below average throughout the winter for multiple years in a row. Sea ice persistence is expected to further decline in the Bering Sea. Our results indicate spectacled eiders may be vulnerable to climate change and the increasingly variable sea ice conditions throughout their wintering range with potentially deleterious effects on population dynamics. Importantly, we identified that different demographic rates responded similarly to changes in sea ice conditions, emphasizing the need for integrated analyses to understand population dynamics.  相似文献   

11.
The spatial distribution of the sea cucumber Apostichopus japonicus (Selenka, 1867) in the Far Eastern Marine Reserve was studied using scuba. The abundance, size composition, population density, and distribution of A. japonicus were determined. The population density of this species at the mainland coast was higher than in waters around islands in the reserve. Seasonal movements of sea cucumber were observed: in autumn large individuals migrate to greater depths, but at the beginning of summer they move to shallow water. The average sizes of individuals and population density of sea cucumber in the reserve do not differ from those in unprotected areas of Peter the Great Bay. A comparative analysis of our own and literature data showed that the current estimates of sea cucumber population density in the reserve are 5?7 times lower than estimates for the period before the illegal fishing of sea cucumber began in Primorye.  相似文献   

12.
Larson S  Jameson R  Etnier M  Jones T  Hall R 《PloS one》2012,7(3):e32205
All existing sea otter, Enhydra lutris, populations have suffered at least one historic population bottleneck stemming from the fur trade extirpations of the eighteenth and nineteenth centuries. We examined genetic variation, gene flow, and population structure at five microsatellite loci in samples from five pre-fur trade populations throughout the sea otter's historical range: California, Oregon, Washington, Alaska, and Russia. We then compared those values to genetic diversity and population structure found within five modern sea otter populations throughout their current range: California, Prince William Sound, Amchitka Island, Southeast Alaska and Washington. We found twice the genetic diversity in the pre-fur trade populations when compared to modern sea otters, a level of diversity that was similar to levels that are found in other mammal populations that have not experienced population bottlenecks. Even with the significant loss in genetic diversity modern sea otters have retained historical structure. There was greater gene flow before extirpation than that found among modern sea otter populations but the difference was not statistically significant. The most dramatic effect of pre fur trade population extirpation was the loss of genetic diversity. For long term conservation of these populations increasing gene flow and the maintenance of remnant genetic diversity should be encouraged.  相似文献   

13.
Habitat characteristics are primary determinants of nearshore marine communities. However, biological drivers like predation can also be important for community composition. Sea otters (Enhydra lutris ssp.) are a salient example of a keystone species exerting top‐down control on ecosystem community structure. The translocation and subsequent population growth and range expansion of the northern sea otter (Enhydra lutris kenyoni) in Washington State over the last five decades has created a spatio‐temporal gradient in sea otter occupation time and density, and acts as a natural experiment to quantify how sea otter population status and habitat type influence sea otter diet. We collected focal observations of sea otters foraging at sites across the gradient in varying habitat types between 2010 and 2017. We quantified sea otter diet composition and diversity, and long‐term rates of energy gain across the gradient. We found that sea otter diet diversity was positively correlated with cumulative sea otter density, while rate of energy gain was negatively correlated with cumulative density. Additionally, we found that habitat type explained 1.77 times more variance in sea otter diet composition than sea otter cumulative density. Long‐term diet studies can provide a broader picture of sea otter population status in Washington State.  相似文献   

14.
  • 1 During the past 15–20 years, sea otters Enhydra lutris in the Aleutian Islands, Alaska, USA, experienced a drastic decrease in population size. It has been hypothesized that an increase in killer whale Orcinus orca predation was the primary cause of this decline.
  • 2 Causation of the decline by increased killer whale predation is now considered a textbook case of top‐down predator control. The purpose of this review is to re‐evaluate the evidence for killer whale predation and to review evidence for alternative causes.
  • 3 The killer whale predation hypothesis is based on three lines of evidence: (i) there was an increase in the number of observed killer whale attacks on sea otters during the 1990s, coincident with a decline in sea otters, (ii) sea otter populations did not decline in areas considered inaccessible to killer whales, while they declined in adjacent areas considered accessible to killer whales, and (iii) the estimated number of attacks necessary to account for the rate of decline is similar to the observed number of attacks. Our re‐evaluation indicates that although the killer whale hypothesis is by no means disproved, the supporting data are limited and inconclusive.
  • 4 Increases in shark populations in the Aleutian Islands concurrent with the sea otter population declines indicate the need for further research into the role of alternative marine predators in the population decline.
  • 5 High contaminant levels observed in sea otters in the Aleutian Islands warrant further investigation into the impact of these toxins on sea otter health and vital rates, and their possible role on the population decline.
  • 6 Disease has not been ruled out as a significant contributor to the population decline, particularly in the early stages of the decline.
  相似文献   

15.
Patterns of climate-forced range shift in the marine environment are informed by investigating the population dynamics of an ecologically important sea urchin ( Centrostephanus rodgersii – Diadematidae) across its newly extended range in Tasmania (southeastern Australia). A growth model of C. rodgersii is developed allowing estimation of a sea urchin age profile and, in combination with abundance data, we correlate the sea urchin population dynamic with respect to environmental signals across the range extension region. Growth patterns did not vary across the extension region; however, there was a strong pattern of decreasing sea urchin age with increasing distance from the historic range. The sequential poleward discovery of the sea urchin, a pattern of declining age and a general poleward reduction in abundance along the eastern Tasmanian coastline are consistent with a model of range extension driven by recent change in patterns of larval dispersal. We explore this hypothesis by correlating C. rodgersii population characteristics with respect to the East Australian Current (EAC), i.e. the chief vector for poleward larval dispersal, and reveal patterns of declining sea urchin age and abundance with increasing distance from this oceanic feature. Furthermore, C. rodgersii is generally limited to sites where average winter temperatures are warmer than the cold threshold for its larval development. Potential dispersal and physiological mechanisms defining the range extension appear to be strongly coupled to the EAC which has undergone recent poleward advance and resulted in coastal warming in eastern Tasmania. Predicted climate change conditions for this region will favour continued population expansion of C. rodgersii not only via atmospheric-forced ocean warming, but also via ongoing intensification of the EAC driving continued poleward supply of larvae and heat.  相似文献   

16.
Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by 'blitzkrieg'-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as 'infinite'.  相似文献   

17.
A leading hypothesis to explain the dramatic decline of Steller sea lions (Eumetopias jubatus) in western Alaska during the latter part of the 20th century is a change in prey availability due to commercial fisheries. We tested this hypothesis by exploring the relationships between sea lion population trends, fishery catches, and the prey biomass accessible to sea lions around 33 rookeries between 2000 and 2008. We focused on three commercially important species that have dominated the sea lion diet during the population decline: walleye pollock, Pacific cod and Atka mackerel. We estimated available prey biomass by removing fishery catches from predicted prey biomass distributions in the Aleutian Islands, Bering Sea and Gulf of Alaska; and modelled the likelihood of sea lions foraging at different distances from rookeries (accessibility) using satellite telemetry locations of tracked animals. We combined this accessibility model with the prey distributions to estimate the prey biomass accessible to sea lions by rookery. For each rookery, we compared sea lion population change to accessible prey biomass. Of 304 comparisons, we found 3 statistically significant relationships, all suggesting that sea lion populations increased with increasing prey accessibility. Given that the majority of comparisons showed no significant effect, it seems unlikely that the availability of pollock, cod or Atka mackerel was limiting sea lion populations in the 2000s.  相似文献   

18.
高菲  许强  李秀保  何林文  王爱民 《生态学报》2022,42(11):4301-4312
珊瑚礁生态系统是一个高生产力、高生物多样性的特殊海洋生态系统,具有为生物提供栖息地、参与生物地球化学循环、防浪护岸、指示水体污染程度等生态功能。珊瑚礁生态系统的突出特点是其生境异质性很高,各种各样的生境斑块为种类繁多、习性各异的游泳和底栖生物提供栖息场所,这些礁栖生物通过参与各项生态过程而形成各种特定的功能群,共同完成重要的生态功能。在热带珊瑚礁生态系统中,海参是大型底栖动物区系的重要一员。种类繁多的海参具有各自不同的生境选择特征,通过摄食、运动等行为活动发挥着改良底质、促进有机物矿化和营养盐再生等生态作用。近几年来,全球热带海参受人类过度捕捞和珊瑚礁退化的影响而面临资源衰退、物种多样性丧失等问题,深入认识其生态学功能、加强热带海参资源保护迫在眉睫。综述了国内外热带珊瑚礁海参的基础生态学研究进展:海参对珊瑚礁生境斑块呈现显著的偏好选择特征以及种间差异和季节变动,不同生境斑块的食物质量、底质类型和水动力条件是影响海参生境偏好的重要因素;海参通过生物扰动可以改变珊瑚礁生境沉积物的含水量、渗透性、颗粒组成、再矿化率、无机营养物质释放速率以及孔隙水的化学梯度,并增加沉积物中的溶氧浓度、促进溶解...  相似文献   

19.
This study evaluates and projects the effect of experimental removal of two species of wrasses, Thalassoma bifasciatum and Halichoeres bivittatus, on the demographic structure of the Caribbean sea urchin Diadema antillarum. For census periods ‘before’ and ‘after’ fish removal at treatment and un-manipulated control sites, size-based matrix population projections revealed the most important change in the sea urchin demography was increased survival of the medium size-class following removal of wrasses. The asymptotic growth rate (λ) exhibited no differences between periods for the control; however, the treatment displayed a significant increase in λ from 0.94 to 1.0. During the before period, the treatment population displayed lower λ than the control population, indicating site differences in urchin recruitment from the outset of the experiment, however after one year of maintenance of the predator removal treatment, the treatment population exhibited and increased growth rate to become similar to the control population; indicating predatory-release for the treatment population. Physiological status of sea urchins, as determined by righting times, exhibited no difference between treatment and control populations, or through time. Nil correlation was evident between righting activity and urchin size, indicating that urchin physiological status was not influenced by predation. Long-term demographic simulation indicated that the sea urchin population growth at the treatment site was negative and thus unviable predatory wrasse. However, only one year after fish removal, sea urchin population growth rate became positive. Therefore local population recovery for D. antillarum appears enhanced when abundance of wrasses is kept low.  相似文献   

20.
Understanding the spatial structure of a population is critical for effective assessment and management. However, direct observation of spatial dynamics is generally difficult, particularly for marine mammals. California sea lions ( Zalophus californianus ) are polygynous pinnipeds distributed along the Pacific coast of North America. The species' range has been subdivided into three management stocks based on differences in mitochondrial DNA, but to date no studies have considered nuclear genetic variation, and thus we lack a comprehensive understanding of gene flow patterns among sea lion colonies. In light of recent population declines in the Gulf of California, Mexico, it is important to understand spatial structure to determine if declining sea lion colonies are genetically isolated from others. To define population subdivision and identify sex biases in gene flow, we analysed a 355-bp sequence of the mitochondrial DNA control region and 10 polymorphic microsatellite loci from 355 tissue samples collected from six colonies distributed along Mexican waters. Using a novel approach to estimate sex biases in gene flow, we found that male sea lions disperse on average 6.75 times more frequently than females. Analyses of population subdivision strongly suggest a pattern of isolation by distance among colonies and challenge current stock definitions. Based on these results, we propose an alternative classification that identifies three Mexican management units: Upper Gulf of California, Southern Baja Peninsula, and Upper Pacific Coast of Baja. This revised classification should be considered in future assessment and management of California sea lion populations in Mexican waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号