首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro cleavage specificity of the adenovirus type 2 proteinase   总被引:10,自引:0,他引:10  
Two in vitro proteinase assay systems were developed and used to study the peptide bond specificity and substrate specificity of the adenovirus endoproteinase. Five adenovirus precursor proteins (PVI, PVII, PVIII, 87K, 11K), all found in the virion of the ts1 mutant grown at the nonpermissive temperature, were digested by the proteinase. All, except 11K, were cleaved to their mature counterparts. Some of the proteins, particularly the 87K terminal protein, were processed via cleavage intermediates similar to those found in vivo. The data suggest that the proteinase specifically hydrolyses Gly-Ala bonds. The high specificity for the natural substrates and the failure to cleave foreign proteins suggest that cleavage activity is determined not only by primary sequence but also by other physical features of the substrate. Enzyme activity was inhibited by diisopropylfluorophosphate, showing that it is a serine proteinase.  相似文献   

2.
The complete amino acid sequence of yeast proteinase B inhibitor 2 (IB2) was determined to be H3N+-Thr-Lys-Asn-Phe-Ile-Val-Thr-Leu-Lys-Lys-Asn-Thr-Pro-Asp-Val-Glu-Ala-Lys-Lys-Phe-Leu-Asp-Ser-Val-His-His-Ala-Gly-Gly-Ser-Ile-Leu-His-Glu-Phe-Asp-Ile-Ile-Lys-Gly-Tyr-Thr-Ile-Lys-Val-Pro-Asp-Val-Leu-His-Leu-Asn-Lys-Leu-Lys-Glu-Lys-His-Asn-Asp-Val-Ile-Glu-Asn-Val-Glu-Asp-Lys-Glu-Val-His-Thr-Asn-COO-. Elucidation of the primary structure was enabled by automated Edman degradation and COOH-terminal hydrolysis with carboxypeptidases A (bovine pancreas and Y (yeast). IB2 is the first proteinase inhibitor to be sequenced that possesses a structure devoid of disulfide bridges.  相似文献   

3.
4.
5.
J Ding  W J McGrath  R M Sweet    W F Mangel 《The EMBO journal》1996,15(8):1778-1783
The three-dimensional structure of the human adenovirus-2 proteinase complexed with its 11 amino acid cofactor, pVIc, was determined at 2.6 A resolution by X-ray crystallographic analysis. The fold of this protein has not been seen before. However, it represents an example of either subtly divergent or powerfully convergent evolution, because the active site contains a Cys-His-Glu triplet and oxyanion hole in an arrangement similar to that in papain. Thus, the adenovirus proteinase represents a new, fifth group of enzymes that contain catalytic triads. pVIc, which extends a beta-sheet in the main chain, is distant from the active site, yet its binding increases the catalytic rate constant 300-fold for substrate hydrolysis. The structure reveals several potential targets for antiviral therapy.  相似文献   

6.
The complete amino acid sequence has been derived for the zymogen of streptococcal proteinase. The protein yielded a unique sequence containing 337 amino acids in a single polypeptide chain. The NH2-terminal residue of the zymogen is aspartic acid and the COOH terminus is proline. The signal peptide commonly associated with the intracellular form of many proteins secreted from eukaryotic cells was absent from the zymogen sequence. The transformation of the zymogen to the enzyme under controlled conditions of proteolysis by trypsin and by streptococcal protease itself involves the removal of 84 amino acid residues from the NH2 terminus of the zymogen. The zymogen-to-enzyme conversion is accompanied by a change in serological specificity. An intermediate, modified zymogen formed in the transformation process contains only 12 amino acid residues less than the zymogen but shows the serological reactivity of both the zymogen and the enzyme.  相似文献   

7.
The complete amino acid sequence (72 amino acid residues) of a double-headed proteinase inhibitor from seeds of Vicia angustifolia L. var. segetalis Koch has been determined and compared with those of other double-headed inhibitors of known structure. Sequencing was performed by conventional methods with the aid of the fragments produced by reduction and S-carboxymethylation of the enzymatically modified inhibitors, and also using tryptic and chymotryptic peptides. The positions of the 14 half-cystine residues agreed among all the reported primary structures of the legume double-headed inhibitors. However, V. angustifolia inhibitor possessed extensive amino acid differences compared to the others. The phylogenetic relationship among these inhibitors was established using the unweighted pair-group method and revealed that the V. angustifolia inhibitor and the peanut inhibitor B-III had diverged at a relatively earlier stage compared to the other inhibitors.  相似文献   

8.
9.
10.
The serine proteinase inhibitor (PSPI-21) isolated from potato tubers (Solanum tuberosum L.) comprises two protein species with pI 5.2 and 6.3, denoted as PSPI-21-5.2 and PSPI-21-6.3, respectively. They were separated by anion exchange chromatography on a Mono Q FPLC column. Both species tightly inhibit human leukocyte elastase, whereas their interaction with trypsin and chymotrypsin is substantially weaker. The sequences of both PSPI-21-5.2 and PSPI-21-6.3 were determined by analysis of overlapping peptides obtained from the oxidized or reduced and S-pyridylethylated proteins after digestion with trypsin or pepsin. Both species of PSPI-21 are composed of two chains, named chains A and B, which are linked by a disulfide bridge between Cys(146) and Cys(157). The other disulfide bridge is located within the A chains between Cys(48) and Cys(97). The amino acid sequences of the large A chains of the two forms, consisting of 150 amino acids residues each, differ in a single residue at position 52. The small chains B, containing 37 and 36 residues in PSPI-21-6.3 and PSPI-21-5.2, respectively, have nine different residues. The entire amino acid sequences of the two inhibitors show a high degree of homology to the other Kunitz-type proteinase inhibitors from plants.  相似文献   

11.
12.
The primary structure of human adenovirus type 12 protease.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

13.
Two arrowhead proteinase inhibitors (inhibitors A and B) were characterized and their primary structures were determined. Both inhibitors A and B are double-headed and multifunctional protease inhibitors. Inhibitor A inhibits an equimolar amount of trypsin and chymotrypsin simultaneously and weakly inhibits kallikrein. Inhibitor B inhibits two molecules of trypsin simultaneously and inhibits kallikrein more strongly than does inhibitor A. The amino acid sequences of inhibitors A and B were determined by sequencing the reduced and S-carboxamidomethylated proteins and their peptides produced by cyanogen bromide or proteolytic lysylendopeptidase or Staphylococcus aureus V8 protease cleavage. Inhibitors A and B consist of 150 amino acid residues with three disulfide bonds (Cys 43-Cys 89, Cys 110-Cys 119, and Cys 112-Cys 115) and share 90% sequence identity, with 13 different residues. Since the primary structures are totally different from those of all other serine protease inhibitors so far known, these inhibitors might be classified into a new protease inhibitor family.  相似文献   

14.
The invasion strategy of many viruses involves the synthesis of viral gene products that mimic the functions of the cellular proteins and thus interfere with the key cellular processes. Here we show that adenovirus infection is accompanied by an increased ubiquitin-cleaving (deubiquitinating) activity in the host cells. Affinity chromatography on ubiquitin aldehyde (Ubal), which was designed to identify the deubiquitinating proteases, revealed the presence of adenovirus L3 23K proteinase (Avp) in the eluate from adenovirus-infected cells. This proteinase is known to be necessary for the processing of viral precursor proteins during virion maturation. We show here that in vivo Avp deubiquitinates a number of cellular proteins. Analysis of the substrate specificity of Avp in vitro demonstrated that the protein deubiquitination by this enzyme could be as efficient as proteolytic processing of viral proteins. The structural model of the Ubal-Avp interaction revealed some similarity between S1-S4 substrate binding sites of Avp and ubiquitin hydrolases. These results may reflect the acquisition of an advantageous property by adenovirus and may indicate the importance of ubiquitin pathways in viral infection.  相似文献   

15.
The interaction of the human adenovirus proteinase (AVP) with various DNAs was characterized. AVP requires two cofactors for maximal activity, the 11-amino acid residue peptide from the C-terminus of adenovirus precursor protein pVI (pVIc) and the viral DNA. DNA binding was monitored by changes in enzyme activity or by fluorescence anisotropy. The equilibrium dissociation constants for the binding of AVP and AVP-pVIc complexes to 12-mer double-stranded (ds) DNA were 63 and 2.9 nM, respectively. DNA binding was not sequence specific; the stoichiometry of binding was proportional to the length of the DNA. Three molecules of the AVP-pVIc complex bound to 18-mer dsDNA and six molecules to 36-mer dsDNA. When AVP-pVIc complexes bound to 12-mer dsDNA, two sodium ions were displaced from the DNA. A Delta of -4.6 kcal for the nonelectrostatic free energy of binding indicated that a substantial component of the binding free energy results from nonspecific interactions between the AVP-pVIc complex and DNA. The cofactors altered the interaction of the enzyme with the fluorogenic substrate (Leu-Arg-Gly-Gly-NH)2-rhodamine. In the absence of any cofactor, the Km was 94.8 microM and the kcat was 0.002 s(-1). In the presence of adenovirus DNA, the Km decreased 10-fold and the kcat increased 11-fold. In the presence of pVIc, the Km decreased 10-fold and the kcat increased 118-fold. With both cofactors present, the kcat/Km ratio increased 34000-fold, compared to that with AVP alone. Binding to DNA was coincident with stimulation of proteinase activity by DNA. Although other proteinases have been shown to bind to DNA, stimulation of proteinase activity by DNA is unprecedented. A model is presented suggesting that AVP moves along the viral DNA looking for precursor protein cleavage sites much like RNA polymerase moves along DNA looking for a promoter.  相似文献   

16.
The following sequence has been derived for streptococcal proteinase. (See article). The sequence permits the assignment of the single cysteine residue essential for catalytic action at position 47 from the NH2 terminus of the protein. The tryptophan residue at the binding site of the enzyme is at position 214. A histidine residue at position 195 has been assigned as the catalytically important entity in the molecule. Streptococcal proteinase and papain, an enzyme with similar properties, are compared with respect to structure and function.  相似文献   

17.
Primary structure of the fifth component of murine complement   总被引:12,自引:0,他引:12  
A cDNA library was constructed by the method of Okayama and Berg, [Okayama, H., & Berg, P. (1983) Mol. Cell. Biol. 3, 280-289] employing size-selected (greater than 28 S) poly(A+) liver RNA from the mouse strain B10.WR. A total of 150,000 recombinants were screened with a partial human C5 cDNA probe; 16 C5-positive clones were identified, 1 of which contained an insert greater than 5.2 kilobase pairs in length. This cDNA insert was fully sequenced by the dideoxy method. The DNA sequence of this insert had an open reading frame of 4920 base pairs specifying a sequence of 1640 amino acid residues. The region corresponding to positions 372-812 exhibited high homology with the previously determined partial structure for human C5 of 438 amino acid residues. A four-residue basic sequence (Arg-Ser-Lys-Arg) was identified upstream of the amino-terminal Asn of C5a, thereby specifying a beta alpha-chain orientation for the promolecule form of murine C5. The 3' end of this clone contained 351 base pairs of untranslated sequence. The presumed polyadenylation recognition site CATAAA was located 17 base pairs upstream of the poly(A) tail. Comparison of the derived murine C5 sequence with previously determined structures for murine C3 and C4 revealed regions of high sequence similarity, including the thiol ester region present in C3 and C4. The cysteine and proximal glutamine which give rise to the intramolecular thiol ester bond in C3 and C4 were absent in C5, having been replaced by serine and alanine, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Hexon capsomers of human adenovirus type 1 (h1) labeled by iodine 125 were digested in a native state (trimers) by trypsin, chymotrypsin or papain, and the resulting hydrolysates were analyzed by SDS-PAGE. In each case, a discrete and temporally stable pattern of relatively large fragments was revealed. The degree of hexon polypeptide hydrolysis was maximal for papain, intermediate for chymotrypsin and minimal for trypsin, the largest fragments in the digest being 32, 40 and 80 kD, respectively. At room temperature, all the electrophoretically discernible hexon proteolytical fragments were held together in structures resembling intact hexon trimers and could be regarded as "hexon cores", of which papain hexon cores were the most stable during SDS-PAGE. Radioimmunoprecipitation analysis revealed a complete absence of native hexon antigenicity in thermodenaturated fragments of hexon protease digests, while native trypsin, chymotrypsin and papain hexon cores could be precipitated by hexon-specific antibodies. The immunoprecipitated material contained all of the hexon fragments found in appropriate hexon cores and retained the structure of the original cores. Trypsin, chymotrypsin and papain hexon cores were shown to possess at least part of native Ad h1 hexon antigenic determinants of each of the following specificities: species-specific (epsilon), cross-reactive with hexon of human adenoviruses (h3 and h6), simian adenovirus (sim 16), bovine adenoviruses (bos 3 and bos 7) and avian adenovirus (Aviadenovirus gal 1 or CELO). Thus, the full spectrum of known hexon antigenic determinants (species-specific to intergenus-crossreactive) is at least portly stable against protease attack of native hexon capsomers.  相似文献   

19.
Selectivity and polarity of adenovirus type 5 DNA packaging are believed to be directed by an interaction of putative packaging factors with the cis-acting adenovirus packaging domain located within the genomic left end (nucleotides 194 to 380). In previous studies, this packaging domain was mutationally dissected into at least seven functional elements called A repeats. These elements, albeit redundant in function, exhibit differences in the ability to support viral packaging, with elements I, II, V, and VI as the most critical repeats. Viral packaging was shown to be sensitive to spatial changes between individual A repeats. To study the importance of spatial constraints in more detail, we performed site-directed mutagenesis of the 21-bp linker regions separating A repeats I and II, as well as A repeats V and VI. The results of our mutational analysis reveal previously unrecognized sequences that are critical for DNA encapsidation in vivo. On the basis of these results, we present a more complex consensus motif for the adenovirus packaging elements which is bipartite in structure. DNA encapsidation is compromised by changes in spacing between the two conserved parts of the consensus motif, rather than between different A repeats. Genetic evidence implicating packaging elements as independent units in viral DNA packaging is derived from the selection of revertants from a packaging-deficient adenovirus: multimerization of packaging repeats is sufficient for the evolution of packaging-competent viruses. Finally, we identify minimally sized segments of the adenovirus packaging domain that can confer viability and packaging activity to viruses carrying gross truncations within their left-end sequences. Coinfection experiments using the revertant as well as the minimal-packaging-domain mutant viruses strengthen existing arguments for the involvement of limiting, trans-acting components in viral DNA packaging.  相似文献   

20.
Anatomy of region L1 from adenovirus type 2.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号