首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   

2.
The effect and mode of action of vasoactive intestinal polypeptide (VIP), a peptidergic neuromodulator in the gastrointestinal nervous system, were investigated in isolated muscle strips of the guinea-pig ileum. VIP induced concentration-dependent (20 nM-1 microM) contractions of longitudinal ileal strips. TTX (1 microM), a mixture of atropine (3 microM) and spantide (30 microM), a mixture of atropine (3 microM) and omega-conotoxin GVIA (100 nM), somatostatin (60 nM) and dynorphin (100 nM) abolished the effect of VIP. In most cases a small relaxation became evident. Desensitization to substance P in the presence of atropine prevented VIP-induced contraction. A partial inhibition was observed in the presence of atropine (3 microM), spantide (30 microM), omega-conotoxin GVIA (100 nM), beta-endorphin (265 nM), met-enkephalin (1100 nM) and a mixture of spantide (30 microM) and omega-conotoxin GVIA (100 nM). The action of VIP was not significantly modified by guanethidine (3 microM) or hexamethonium (150 microM). In circular ileal strips VIP (10-300 nM) caused concentration-dependent relaxations through a direct myogenic effect. These results indicate that the VIP produced contractions of the guinea-pig ileum are exclusively neurally mediated and involve a cholinergic as well as a noncholinergic-nonadrenergic (NANC) pathway. It is concluded that besides acetylcholine (Ach) VIP releases the peptidergic transmitter substance P from postganglionic nerve fibers of myenteric plexus. Opioid peptides and somatostatin modulate the activity of cholinergic and peptidegic nerves in the guinea-pig ileum. The release of substance P appears to depend completely on N-type voltage sensitive calcium channels.  相似文献   

3.
Ginsenoside, one of the active ingredients of Panax ginseng, has a variety of physiological and pharmacological actions in various organs. However, little is known about the effects of ginsenosides on gastrointestinal (GI) motility. We studied the modulation of pacemaker potentials by ginsenoside in the interstitial cells of Cajal (ICCs) using the whole-cell patch clamp technique in the current clamp mode. Among ginsenosides, we investigated the effects of ginsenoside Rb1, Rg3 and Rf. While externally applied Rb1 and Rg3 had no effects on pacemaker potentials, Rf caused membrane depolarization. The application of flufenamic acid or niflumic acid abolished the generation of pacemaker potentials and inhibited the Rf-induced membrane depolarization. Membrane depolarization induced by Rf was not inhibited by intracellular application of guanosine 5′-[β-thio]diphosphate trilithium salt. Pretreatment with a Ca2+-free solution, thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, U-73122, a phospholipase C inhibitor, or 2-APB, an IP3 receptor inhibitor, abolished the generation of pacemaker potentials and suppressed Rfinduced actions. However, treatment with chelerythrine and calphostin C, protein kinase C inhibitors, did not block Rf-induced effects on pacemaker potentials. These results suggest that ginsenoside Rf modulates the pacemaker activities of ICCs and therby regulates intestinal motility.  相似文献   

4.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2007,81(12):1016-1023
1-Hydroxy-2, 3, 5-trimethoxyxanthone (HM-1) is a xanthone isolated from Halenia elliptica, a Tibetan medicinal herb. HM-1 (0.33-42.1 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 1.67+/-0.27 microM. Removal of the endothelium significantly affected the vasodilator potency of HM-1, resulting in 46% decrease in E(max) value. The endothelium-dependent effects of HM-1 was confirmed when its vasorelaxant effect was inhibited after addition of nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (100 microM) or the soluble guanylate cyclase inhibitor 1H-[1, 2, 4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM). Atropine (100 nM), flurbiprofen (10 microM), propranolol (100 microM), pyrilamine (10 microM), cimetidine (10 microM) and SQ22536 (100 microM) had no effect on the vasorelaxant activity of HM-1 indicated the non-involvement of other receptor/enzyme systems. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-1 was unaffected by potassium channel blockers such as tetraethylammonium (10 mM), iberiotoxin (100 nM), barium chloride (100 microM) and 4-aminopyridine (1 mM). The involvement of Ca(2+) channel in 5-HT-primed artery ring preparations incubated with Ca(2+)-free buffer was confirmed when HM-1 (9.93 microM) partially abolished the CaCl(2)-induced vasoconstriction (87% inhibition in intact-endothelium artery rings; 50% inhibition in endothelium-denuded rings). In the KCl-primed preparations incubated with Ca(2+)-free buffer, HM-1 (9.93 microM) produced a 27.3% inhibition in endothelium-denuded rings. HM-1 (3.31-33.1 microM) had minimal relaxant effects (14.4%-20.3%) on the contractile response generated by 10 microM phorbol 12,13-diacetate (PDA) in Ca(2+)-free solutions, suggesting minimal effects on intracellular Ca(2+) mechanisms. These findings suggest the vasodilator action of HM-1 involved both an endothelium-dependent mechanism involving NO and an endothelium-independent mechanism by inhibiting Ca(2+) influx through L-type voltage-operated Ca(2+) channels; a minor contribution to the effects of HM-1 may be related to inhibition of the protein kinase C-mediated release of intracellular Ca(2+) stores.  相似文献   

5.
The addition of castanospermine (5-50 microM) to a culture medium of Caco-2 cells results in a specific suppression of sucrase activity without modification of the biosynthesis of the enzyme. This effect is due to a direct inhibiting effect of castanospermine on Caco-2 sucrase activity. This inhibition is time-dependent (half-maximum efficiency at 10 min for 100 nM), enhanced by preincubation (suggesting a strong interaction with the enzyme), dose-dependent (ED50 at 4 nM after 1 h preincubation period) and of the fully non-competitive type. The calculated Ki (2.6 nM) suggests that castanospermine is the most potent inhibitor of sucrase so far reported.  相似文献   

6.
Sphingosine inhibited [3H]methylhistidine-thyrotropin-releasing hormone (MeTRH) binding to intact GH3 cells and to GH3 membranes. This inhibition was dependent on the concentration of sphingosine and on the ratio of sphingosine to cell number (or membrane protein) and was partly reversed by washing. In intact cells, the IC50 was 63 microM (1.8 X 10(6) cells/ml; 2 nM MeTRH), and 100 microM sphingosine was found, by Scatchard analysis, to increase the apparent dissociation constant (Kd) from 1.1 +/- 0.3 to 6.5 +/- 2.3 nM and to decrease the maximal binding capacity (Bmax) to 41 +/- 9.5% of control. Kinetic analysis showed that the major effect of sphingosine on Kd was due to a marked decrease in the apparent association rate constant for MeTRH from 2.5 +/- 0.4 X 10(5) M-1 s-1 to 0.10 +/- 0.015 X 10(5) M-1 s-1. At 100 microM, sterylamine was as effective as sphingosine in inhibiting MeTRH binding, whereas sphinganine was less effective, and psychosine and steroylsphingosine were without effect. The following observations show that sphingosine inhibition of MeTRH binding did not involve protein kinase C. The IC50 for sphingosine inhibition of MeTRH binding was the same in GH3 cells that had been incubated with 1 microM phorbol 12-myristate 13-acetate for 16 h, to "down-regulate" protein kinase C, as in control cells. Sphingosine inhibited MeTRH binding to membranes isolated from GH3 cells that contain very little protein kinase C activity. In GH3 membranes, 100 microM sphingosine increased the Kd for MeTRH from 3.4 +/- 0.1 to 13 +/- 3.1 nM but did not significantly decrease Bmax (12 +/- 5.0% of control, p greater than 0.05). And, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, an inhibitor of protein kinase C, failed to decrease MeTRH binding to intact GH3 cells or to membranes, and did not interfere with the effects of sphingosine. These data show that sphingosine and its analogs have complex actions to inhibit MeTRH binding to GH3 cells, at least some of which are independent of protein kinase C, and thereby demonstrate that sphingolipids cannot be used as specific inhibitors of protein kinase C.  相似文献   

7.
The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on human lung cancer cell line NCI-1299 mitogen activated protein kinase (MAPK) tyrosine phosphorylation and vascular endothelial cell growth factor (VEGF) expression were investigated. PACAP-27 (100 nM) increased MAPK tyrosine phosphorylation 3-fold, 5 min after addition to NCI-H1299 cells. PACAP caused tyrosine phosphorylation in a concentration-dependent manner being half-maximal at 10 nM PACAP-27. PACAP-27 or PACAP-38 (100 nM) but not PACAP28-38 or VIP caused increased MAPK tyrosine phosphorylation using NCI-H1299 cells. Also, the increase in MAPK tyrosine phosphorylation caused by PACAP-27 was totally inhibited by 10 microM PACAP(6-38), a PAC(1) receptor antagonist or 10 microM PD98059, a MAPKK inhibitor. These results suggest that PAC(1) receptors regulate tyrosine phosphorylation of MAPK in a MAPKK-dependent manner. PACAP-27 (100 nM) caused increased VEGF mRNA in NCI-H1299 cells after 8 h. The increase in VEGF mRNA caused by PACAP-27 was partially inhibited by PACAP(6-38), PD98059 and H-89. Addition of VIP to NCI-H1299 cells caused increased VEGF mRNA, which was totally inhibited by H89, a PKA inhibitor. These results suggest that PAC(1) and VPAC(1) receptors regulate VEGF expression in lung cancer cells.  相似文献   

8.
The protein phosphatase inhibitor okadaic acid (OA) dose-dependently induced apoptosis in CHP-100 neuroepithelioma cells when administered for 24 h at concentrations ranging from 10 - 100 nM. Apoptosis was largely, albeit not completely, dependent on cystein protease (caspase) activation. CPP32 processing and poly(ADP-ribose) polymerase (PARP) cleavage started to be observed only at 20 nM OA; moreover, the caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD.fmk) (100 microM) had negligible effect on apoptosis induced by 10 nM OA, but rescued from death an increasing cell fraction as OA concentration was raised from 20 - 100 nM. Cell treatment for 24 h with OA induced ceramide accumulation; the phenomenon started to be evident at 20 nM OA and reached its maximum at 50 - 100 nM OA. In cells exposed to 50 nM OA, ceramide was already elevated by 5 h; at this time, however, PARP cleavage and apoptosis were not yet observed. Z-VAD.fmk (100 microM) had no effect on ceramide elevation induced by 50 nM OA within 5 h, but markedly reduced ceramide accumulation as the incubation was prolonged to 24 h. The latter phenomenon was accompanied by elevation of glucosylceramide levels, thus suggesting that a caspase-dependent reduction of glucosylceramide synthesis might contribute to late ceramide accumulation. Short-chain ceramide (30 microM) induced apoptosis in CHP-100 cells and its effect was additive with that evoked by OA (10 - 20 nM). These results suggest that ceramide generation might be an important mechanism through which sustained protein phosphatase inhibition induces caspase activation and apoptosis in CHP-100 cells.  相似文献   

9.
P Wiik 《Regulatory peptides》1989,25(2):187-197
The neuropeptide vasoactive intestinal peptide (VIP) was shown to inhibit the production of reactive oxygen compounds (respiratory burst) in monocytes activated by serum opsonized zymosan. Reactive oxygen compounds are of importance for host defence against micro-organisms and cancer, but normal tissues are also susceptible to damage from these reactive substances. Maximum inhibition of respiratory burst was 40% by 0.1 microM VIP (ID100), while ID50 for the VIP effect was 0.36 nM VIP. PHM-27, closely related to VIP on the basis of the amino acid sequence, inhibited the respiratory burst with much lower potency (ID50 = 60 nM, ID100 = 1 microM). Secretin, related to VIP and PHM-27, produced no effect on the respiratory burst in monocytes. VIP was also shown to stimulate the cyclic AMP production in monocytes in a dose dependent manner. IBMX and forskolin, as well as the cyclic AMP analogue butyryl cyclic AMP were shown to produce an inhibition of the respiratory burst. In conclusion, this study showed that VIP inhibited the respiratory burst in monocytes by a cyclic AMP-mediated mechanism, and serves to establish still another role for VIP as a mediator in the neuro-immune axis.  相似文献   

10.
Kim BJ  Nam JH  Kim SJ 《Molecules and cells》2011,32(2):153-160
The interstitial cells of Cajal (ICCs) are pacemakers in the gastrointestinal tract and transient receptor potential melastatin type 7 (TRPM7) is a candidate for pacemaker channels. The effect of the 5-lipoxygenase (5-LOX) inhibitors NDGA, AA861, MK886 and zileuton on pacemaking activity of ICCs was examined using the whole cell patch clamp technique. NDGA and AA861 decreased the amplitude of pacemaker potentials in ICC clusters, but the resting membrane potentials displayed little change, respectively. Also, perfusing NDGA and AA861 into the bath reduced both inward current and outward current in TRPM7-like current in single ICC, respectively. But, they had no effects on Ca2+ activated Cl currents. The 5-LOX inhibitors MK886 and zileuton were, however, ineffective in pacemaker potentials in ICC clusters and in TRPM7-like current in single ICC, respectively. A specific TRPC3 inhibitor, pyrazole compound (Pyr3), and a specific TRPM4 inhibitor, 9-phenanthrol, had no effects in pacemaker potentials in ICC clusters and in TRPM7-like current in single ICC. These results suggest that, among the tested 5-LOX inhibitors, NDGA and AA861 modulate the pacemaker activities of the ICCs, and that the TRPM7 channel can affect intestinal motility.  相似文献   

11.
Oxytocin increased cyclic GMP levels in LLC-PK1 porcine kidney epithelial cells through activation of soluble guanylate cyclase. NG-Monomethyl-L-arginine and N omega-nitro-L-arginine inhibited oxytocin (10 microM) induced cyclic GMP accumulation with IC50 values of 2.3 microM and 140 nM, respectively, and the inhibition was prevented with L-arginine. Both inhibitors at 100 microM lowered the basal levels of cyclic GMP, but did not affect those induced by 1 microM sodium nitroprusside and 100 nM atrial natriuretic factor. These data support our hypothesis that an endothelium-derived relaxing factor-like substance is formed as the endogenous activator of soluble guanylate cyclase in an L-arginine-dependent fashion in various cell types. N omega-Nitro-L-arginine is 16 times more potent than NG-monomethyl-L-arginine as a specific inhibitor of this pathway in LLC-PK1 cells.  相似文献   

12.
Estrogens could play a cardiovascular protective role not only by means of systemic effects but also by means of direct effects on vascular structure and function. We have studied the acute effects and mechanisms of action of 17-beta-estradiol on vascular tone of rabbit isolated carotid artery. 17-Beta-estradiol (10, 30, and 100 microM) elicited concentration-dependent relaxation of 50 mM KCl-induced active tone in male and female rabbit carotid artery. The stereoisomer 17-alpha-estradiol showed lesser relaxant effects in male rabbits. Endothelium removal did not modify relaxation induced by 17-beta-estradiol. The NO synthase inhibitor L-NAME (100 microM) only reduced significantly relaxation produced by 30 microM 17-beta-estradiol. Relaxation was not modified by the estrogen receptor antagonist ICI 182,780 (1 microM), the protein synthesis inhibitor cycloheximide (1 microM), and the selective K(+) channel blockers charybdotoxin (0.1 microM) and glibenclamide (1 microM). CaCl(2) (30 microM -10 mM) induced concentration-dependent contraction in rabbit carotid artery depolarized by 50 mM KCl in Ca(2+) free medium. Preincubation with 17-beta-estradiol (3, 10, 30, or 100 microM) or the L-type Ca(2+) channel blocker nicardipine (0.01, 0.1, 1, or 10 nM) produced concentration-dependent inhibition of CaCl(2)-induced contraction. In conclusion, 17-beta-estradiol induces endothelium-independent relaxation of rabbit carotid artery, which is not mediated by classic estrogen receptor and protein synthesis activation. The relaxant effect is due to inhibition of extracellular Ca(2+) influx to vascular smooth muscle, but activation of K(+) efflux is not involved. Relatively high pharmacological concentrations of estrogen causing relaxation preclude acute vasoactive effects of plasma levels in the carotid circulation.  相似文献   

13.
The influence of nerve stimulation pattern on transmitter release inhibition by L-citrulline, the co-product of NO biosynthesis by nitric oxide synthase (NOS), was studied in the rat phrenic nerve-hemidiaphragm. We also investigated the putative interactions between NOS pathway and the adenosine system. L-citrulline (10-470 microM), the NOS substrate L-arginine (10-470 microM) and the NO donor 3-morpholinylsydnoneimine (SIN-1, 1-10 microM), concentration-dependently inhibited [(3)H]-acetylcholine ([(3)H]-ACh) release from rat motor nerve endings. Increasing stimulus frequency from 5 Hz-trains to 50 Hz-bursts enhanced [(3)H]-ACh release inhibition by l-arginine (47 microM) and L-citrulline (470 microM), whereas the effect of SIN-1 (10 microM) remained unchanged. NOS inhibition with N(omega)-nitro-L-arginine (100 microM) prevented the effect of L-arginine, but not that of L-citrulline. Adenosine deaminase (2.5 U/ml) and the adenosine transport inhibitor, S-(p-nitrobenzyl)-6-thioinosine (10 microM), attenuated release inhibition by L-arginine and L-citrulline. With 5 Hz-trains, blockade of A(1) receptors with 1,3-dipropyl-8-cyclopentyl xanthine (2.5 nM), but not of A(2A) receptors with ZM241385 (10nM), reduced the inhibitory action of l-arginine and L-citrulline; the opposite was verified with 50 Hz-bursts. Blockade of muscarinic M(2) autoreceptors with AF-DX116 (10 nM) also attenuated the effects of L-arginine and L-citrulline with 50 Hz-bursts. L-citrulline (470 microM) increased basal adenosine outflow via the equilibrative nucleoside transport system sensitive to NBTI (10 microM), without significantly (P>0.05) changing the nucleoside release subsequent to nerve stimulation. Data indicate that NOS-derived L-citrulline negatively modulates [(3)H]-ACh release by increasing adenosine outflow channelling to A(1) and A(2A) receptors activation depending on the stimulus paradigm. While adenosine acts predominantly at inhibitory A(1) receptors during 5 Hz-trains, inhibition of ACh release by L-citrulline at 50 Hz-bursts depends on the interplay between adenosine A(2A) and muscarinic M(2) receptors.  相似文献   

14.
Interstitial cells of Cajal (ICCs) are the pacemakers of the gastrointestinal tract, and transient receptor potential melastatin type 7 (TRPM7) and Ca2+ activated Cl channels (ANO1) are candidate the generators of pacemaker potentials in ICCs. The effects of D-erythro-sphingosine (SPH) and structural analogues of SPH, that is, N,N-dimethyl-Derythro-sphingosine (N,N-DMS), FTY720, and FTY720-P on the pacemaking activities of ICCs were examined using the whole cell patch clamp technique. SPH, N,N-DMS, and FTY720 decreased the amplitudes of pacemaker potentials in ICC clusters, but resting membrane potentials displayed little change. Also, perfusing SPH, N,N-DMS, or FTY720 in the bath reduced both inward and outward TRPM7-like currents in single ICCs, and inhibited ANO1 currents. The another structural analogue of SPH, FTY720-P was ineffective at the pacemaker potentials in ICC clusters and the TRPM7-like currents in single ICCs. Furthermore, FTY720- P had no effect on ANO1. These results suggest that SPH, N,N-DMS, and FTY720 modulate the pacemaker activities of ICCs, and that TRPM7 and ANO1 channels affect intestinal motility.  相似文献   

15.
The effects vasoactive intestinal peptide (VIP) antagonists were investigated on pancreatic cancer cell lines. (N-Stearyl, Norleucine17) VIP hybrid ((SN)VIPhyb) inhibited 125I-VIP binding to human Capan-2 cells with an IC50 value of 0.01 microM whereas VIP hybrid had an IC50 value of 0.2 microM. By RT-PCR and Northern blot, VPAC1 receptor mRNA was detected in CAPAN-2 cells. One microM (SN)VIPhyb and 10 microM VIPhyb inhibited the ability of 30 nM VIP to elevate cyclic AMP and increase c-fos mRNA. (SN)VIPhyb, 1 microM inhibited the clonal growth of CAPAN-2 cells in vitro. In vivo, (SN)VIPhyb (10 microg/day s.c.) inhibited CAPAN-2 xenograft growth in nude mice. These results indicate that (SN)VIPhyb is a pancreatic cancer VPAC receptor antagonist.  相似文献   

16.
In this study, we identify and investigate the role of protein kinase G (PKG) in cells cultured from human prostatic stroma. Cells were used for immunocytochemistry, contractility or K(+) fluorescent imaging studies. All cultured prostatic stromal cells showed PKG immunostaining. Phorbol 12,13 diacetate (PDA, 1 microM) elicited contractions from human-cultured prostatic stromal cells that could be blocked by both the L-type Ca(2+) channel blocker, nifedipine (3 microM), and the protein kinase C inhibitor, bisindolylmaleimide (1 microM). The nitric oxide donor, sodium nitroprusside (SNP, molar pIC(50) 5.16+/-0.17) and the cGMP-phosphodiesterase inhibitor, zaprinast (50 microM), inhibited PDA (1 microM)-induced contractions. The PKG activator beta-phenyl-1, N(2)-ethenoguanosine-3',5'-cyclic monophosphate (PET-cGMP, molar pIC(50) 6.96 +/- 0.25) also inhibited PDA (1 microM)-induced contractions. Glibenclamide (10 microM) and Rp-8-Br-cGMPS (5 microM), but not iberiotoxin (100 nM) or Rp-cAMP (5 microM), reversed this inhibition. In human-cultured prostatic stromal cells loaded with the K(+) fluorescent indicator, 1,3-Benzenedicarboxylic acid, 4,4'-[1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diylbis(5-methoxy-6,2-benzofurandiyl)]bis-, tetrakis [(acetyloxy) methyl] ester (PBFI), PET-cGMP (300 nM) caused a reduction in intracellular K(+) that was blocked by glibenclamide (10 microM) and Rp-8-Br-cGMPS (5 microM), but not by iberiotoxin (100 nM). These data are consistent with the hypothesis that, in human-cultured prostatic stromal cells, PKG inhibits contractility through the activation of K(ATP) channels.  相似文献   

17.
We have previously shown that Gq protein-coupled receptor (GqPCR) agonists stimulate epidermal growth factor receptor (EGFr) transactivation and activation of mitogen-activated protein kinases (MAPK) in colonic epithelial cells. This constitutes a mechanism by which Cl- secretory responses to GqPCR agonists are limited. In the present study we examined a possible role for the EGFr in regulating Cl- secretion stimulated by agonists that act through GsPCRs. All experiments were performed using monolayers of T84 colonic epithelial cells grown on permeable supports. Protein phosphorylation and protein-protein interactions were analyzed by immunoprecipitation and Western blotting. Cl- secretion was measured as changes in short-circuit current (DeltaIsc) across voltage-clamped T84 cells. The GsPCR agonist, vasoactive intestinal polypeptide (VIP; 100 nM), rapidly stimulated EGFr phosphorylation in T84 cells. This effect was mimicked by a cell-permeant analog of cAMP, Bt2cAMP/AM (3 microM), and was attenuated by the protein kinase A (PKA) inhibitor, H-89 (20 microM). The EGFr inhibitor, tyrphostin AG1478 (1 microM), inhibited both Bt2cAMP/AM-stimulated EGFr phosphorylation and Isc responses. VIP and Bt2cAMP/AM both stimulated ERK MAPK phosphorylation and recruitment of the p85 subunit of phosphatidylinositol 3-kinase (PI3K) to the EGFr in a tyrphostin AG1478-sensitive manner. The PI3K inhibitor, wortmannin (50 nM), but not the ERK inhibitor, PD 98059 (20 microM), attenuated Bt2cAMP/AM-stimulated secretory responses. We conclude that GsPCR agonists rapidly transactivate the EGFr in T84 cells by a signaling pathway involving cAMP and PKA. Through a mechanism that likely involves PI3K, transactivation of the EGFr is required for the full expression of cAMP-dependent Cl- secretory responses.  相似文献   

18.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2008,82(1-2):91-98
1, 5-Dihydroxy-2, 3-dimethoxy-xanthone (HM-5) is one of the naturally-occurring xanthones of a Tibetan medicinal herb Halenia elliptica. Recently, it has been shown that HM-5 is one of the phase I metabolites of 1-hydroxy-2, 3, 5-trimethoxy-xanthone (HM-1), the major active component of H. elliptica with potent vasorelaxant actions. This study investigated the vasorelaxant effect of HM-5 and its mechanism(s). HM-5 (0.35-21.9 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 4.40+/-1.08 microM. Unlike HM-1, the effect of HM-5 was endothelial-independent such that removal of the endothelium did not affect its vasodilator potency. Nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME, 100 microM), the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM) did not affect the vasodilatory effects of HM-5, thus confirming the non-involvement of endothelium related mechanisms. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-5 was inhibited by a potassium channel blocker, TEA (10 mM), and 4-aminopyridine (4-AP, a K(v) blocker; 1 mM) but not by other K+ channel blockers such as iberiotoxin (100 nM), barium chloride (100 microM) and glibenclamide (10 microM). The involvement of Ca2+ channel was studied in artery rings pre-incubated with Ca2+-free buffer (intact endothelium or endothelium-denuded) and primed with 1 microM 5-HT or 60 mM KCl prior to the addition of CaCl2 to elicit contraction. In the 5-HT-primed preparations, HM-5 (34.7 microM) significantly inhibited the CaCl(2)-induced vasoconstriction (89.9% inhibition in intact endothelium artery rings; 83.3% inhibition in endothelium-denuded rings). In the KCl-primed preparations, HM-5 (34.7 microM) produced a 34% inhibition in endothelium-denuded rings. The same concentration of HM-5 inhibited (by 62.3%) the contractile response to 10 microM phorbol 12, 13-diacetate (PDA), a protein kinase C activator, in Ca2+-free solutions. Taken together, this study showed that the mechanisms of the vasorelaxant effects of HM-5 were distinctly different from those of its parent drug HM-1. The vasorelaxant effect of HM-5 was mediated through opening of potassium channel (4-AP) and altering intracellular calcium by partial inhibition of Ca2+ influx through L-type voltage-operated Ca2+ channels and intracellular Ca2+ stores.  相似文献   

19.
We examined the interaction of GABA and the competitive inhibitor SR95531 at human alpha1beta1gamma2S and alpha1beta1 GABA(A) receptors expressed in Sf9 cells. The efficacy and potency of inhibition depended on the relative timing of the GABA and SR95531 applications. In saturating (10 mM) GABA, the half-inhibitory concentrations of SR95531 (IC50) when coapplied with GABA to alpha1beta1gamma2S or alpha1beta1 receptors were 49 and 210 microM for the peak and 18 and 130 microM for the plateau current, respectively. Our data are explained by an inhibition mechanism in which SR95531 and GABA bind to two sites on the receptor where the binding of GABA allows channel opening but SR95531 does not. The SR95531 affinity for both receptor types was approximately 200 nM and the binding rate was found to be 10-fold faster than that for GABA. The dual binding-site model gives insights into the differential effects of GABA and SR95531 on the peak and plateau currents. The model predicts the effect of SR95531 on GABA currents in the synapse (GABA concentration approximately mM) and at extrasynaptic (GABA concentration < or = microM) sites. The IC50 (50-100 nM) for the synaptic response to SR95531 was insensitive to the GABA affinity of the receptors whereas the IC50 (50-800 nM) for extrasynaptic inhibition correlated with the GABA affinity.  相似文献   

20.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号