首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygenation of arachidonic acid into thromboxane B2 (TXB2), 12-hydroxy-heptadecatrienoic (HHT) and 12-hydroxy-eicosatetraenoic (12-HETE) acids has been examined in human platelets in the absence or presence of 1mM calcium. From endogenous arachidonic acid, external calcium did not affect the formation of cyclo-oxygenase products (TXB2 and HHT) but enhanced that of 12-HETE when thrombin at high concentrations was the agonist. Dose-response curves performed with thrombin and collagen revealed that increased stimulation resulted in higher ratios of 12-HETE/HHT. On the other hand external calcium did not alter significantly the synthesis of either products from exogenous arachidonic acid and the total conversion of the substrate was unchanged. We conclude that extracellular calcium may facilitate the liberation of arachidonic acid from platelet phospholipids when induced by high thrombin concentrations. The excess of arachidonic acid liberated would then be diverted towards the lipoxygenase pathway.  相似文献   

2.
Inhibition of leukotriene biosynthesis by acetylenic analogs   总被引:2,自引:0,他引:2  
The monoacetylenic acid, 5,6-dehydroarachidonic acid (5,6-DHA), inhibits the 5-lipoxygenase in RBL-1 extracts in a time-dependent irreversible manner. In intact cell systems, 5,6-DHA is not as effective as ETYA or 15(S)-HEYA in inhibiting the 5-lipoxygenase activities, because 5,6-DHA is metabolized into triglycerides, phospholipids and hydroxylated products. While lipoxygenation of arachidonic acid at C-5 and C-12 is inhibited by 15-HETE, the transformation of arachidonic acid into 5,15-diHETE via 15-HPETE in human leukocytes is relatively insensitive to 15-HETE.  相似文献   

3.
12-Hydroxyeicosatetraenoic acid (12-HETE) is formed from arachidonic acid either by 12-lipoxygenase or by a cytochrome P450 monooxygenase. 12-Lipoxygenase is generally localized in the soluble cytosolic fraction, and the cytochrome P450 monooxygenase is a microsomal enzyme. In this study, 12-HETE biosynthesis and the regulation of 12-HETE biosynthesis by epidermal growth factor (EGF) in A431 cells were investigated. 12-HETE was biosynthesized from arachidonic acid by the microsomal fraction of A431 cells, but not by the cytosolic fraction. The formation of 12-HETE was inhibited by 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and caffeic acid. Nordihydroguaiaretic acid at 10(-4) M and 5,8,11,14-eicosatetraynoic acid at 10(-5) M almost completely inhibited its formation. However, the formation of 12-HETE was not affected by the presence of an NADPH-generating system, carbon monoxide, or SKF 525A. The biosynthetic 12-HETE was analyzed by chiral stationary phase high performance liquid chromatography and was highly enriched in (12S)-HETE. We therefore concluded that the enzyme responsible for the formation of (12S)-HETE in the microsomes of A431 cells is a 12-lipoxygenase. The microsomal 12-lipoxygenase of A431 cells belongs to the "leukocyte-type" enzyme as determined by substrate specificity and enzyme kinetics studies. The microsomal 12-lipoxygenase oxygenated linoleic acid much faster than the cytosolic platelet 12-lipoxygenase and is a "self-catalyzed inactivation" enzyme. Treatment of cells with 50 ng/ml EGF significantly induced microsomal 12-lipoxygenase activity. The lag period for the expression of the stimulatory effect of EGF on 12-lipoxygenase activity was approximately 10 h. The stimulatory effect of EGF on 12-lipoxygenase activity was completely blocked by treatment with 35 microM cycloheximide, indicating a requirement for de novo protein biosynthesis. Furthermore, the presence of the endogenous inhibitor of 12-lipoxygenase (which masked (12S)-HETE biosynthesis in intact cells) was identified in the cytosolic fraction of A431 cells. The putative inhibitor was enzyme-selective. It inhibited the leukocyte-type 12-lipoxygenase, but not the "platelet-type" enzyme.  相似文献   

4.
When platelets are activated by the recognition of exposed collagen fibers, they start synthesizing two major arachidonic acid metabolites, i.e. thromboxane A2 and 12S-hydroxyeicosatetraenoic acid (12-HETE) via cyclooxygenase and 12-lipoxygenase pathways, respectively. Although the physiological role of the former is well established, that of the latter has not been fully elucidated. Recently, we have revealed that 12-HETE interferes with collagen-induced platelet aggregation [Sekiya, F. et al. (1990) Biochim. Biophys. Acta 1044, 165-168]. In the present paper, we show that this substance enhances thrombin-induced aggregation of bovine platelets, in sharp contrast with the case of collagen. Additionally, 12-HETE is able to prevent the prostaglandin E1-induced elevation of platelet cAMP level and counteracts its inhibitory effect on platelet aggregations. With these observations, we propose a novel self-regulatory mechanism of platelets where 12-HETE plays a key role; it switches sensitivity of platelets from the primary agonist (collagen) to the secondary one (thrombin), and cancels the inhibitory effect of cAMP elevators.  相似文献   

5.
Since mouse mast tumor P-815 cells produce the slow reacting substance of anaphylaxis, their 5-lipoxygenase activity was examined by determining the conversion of arachidonic acid to 5-hydroxyeicosatetraenoic acid (HETE). Mast tumor cells from mouse ascites fluid synthesized 12-HETE as a major and 5-HETE as a minor metabolite. Once the cells were transferred to an in vitro culture system, the predominant synthesis of 12-HETE was abolished and synthesis of 5-HETE was greater than that of 12-HETE. 2-E-6 cells, obtained by cloning the tumor cells, synthesized a negligible amount of 12-HETE, but produced a large amount of 5-HETE. When the 2-E-6 cells were inoculated into mice and harvested again from the ascites fluid, their ratio of 5-HETE to 12-HETE synthesis was similar to that of normal mouse peritoneal cells; that is, 12-HETE synthesis was much greater than 5-HETE synthesis. It is concluded that the predominant synthesis of 12-HETE in mast tumor cells was derived from natural peritoneal cells, which have very high 12-lipoxygenase activity. The cloned mastocytoma, 2-E-6 cells, should be useful in investigating regulation of 5-lipoxygenase activity.  相似文献   

6.
J Nakao  Y Koshihara  H Ito  S Murota  W C Chang 《Life sciences》1985,37(15):1435-1442
Platelet-derived growth factor (PDGF) has a chemotactic effect on smooth muscle cells, which is inhibited by lipoxygenase inhibitor caffeic acid. In order to study the role of endogenous lipoxygenase products of arachidonic acid on the chemotactic action of PDGF, effects of PDGF on the lipoxygenase pathway in smooth muscle cells were examined. Lipoxygenase products were analyzed by high-performance liquid chromatography. 15-, 5- and 12-lipoxygenase activities, in order of magnitude, were found in smooth muscle cell homogenate. However, when the lipoxygenase products were analyzed using intact cells prelabelled with [14C]arachidonic acid, only 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) was found to be produced endogenously. In addition, 12-HETE was not released into the medium. Treatment of the cells with PDGF increased the endogenous production of 12-HETE. The amounts of intracellular 12-HETE in PDGF-treated cells were 126, 132 and 146% at 1, 3, and 10 hr's after the initiation of PDGF treatment, respectively, when control value at each time point was considered as 100%. Caffeic acid (10(-4) M) completely inhibited the PDGF effect on 12-HETE production. However, PDGF treatment did not significantly alter the 12-lipoxygenase activity. These results suggest that the stimulatory effect of PDGF on 12-HETE production was not mediated by the activation of 12-lipoxygenase activity. Since 12-HETE itself is a potent chemoattractant for smooth muscle cells, the present dat strongly suggest that 12-HETE could be an important intracellular mediator of the chemotactic action of PDGF on aortic smooth muscle cells.  相似文献   

7.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

8.
Nasal and bronchial epithelium from normal human nasal turbinates was isolated from surgical specimens and used to study arachidonic acid metabolism. High-performance liquid chromatography analysis of cell incubations in the presence of calcium ionophore, A23187, showed the formation of 15-lipoxygenase products. The major arachidonic acid metabolite with bronchial and nasal tissue was 15-HETE identified by uv spectroscopy, coelution with the authentic standards by HPLC, and GC-mass spectrometry. The second major metabolite, formed from either arachidonic acid or 15-HPETE, was identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatetraenoic acid (15-alpha-HEPA) by uv spectroscopy, coelution with the authentic standard, and GC-mass spectrometry. In addition, two 8,15-diHETEs and two 8,15-LTs were identified by uv spectroscopy and coelution with the authentic standards by HPLC on both reverse-phase and normal-phase HPLC. Also isolated and identified were 14,15-diHETEs, and 12-HETE. Nasal epithelial cells appear to be more active than nasal bronchial cells in oxidizing arachidonic acid. However, the profile of metabolites from these normal tissue preparations was similar. The addition of 15-lipoxygenase products to nasal epithelium weakly stimulated Cl- ion secretion. These studies indicate that human pulmonary epithelial cells selectively oxidize arachidonic acid to 15-lipoxygenase metabolites.  相似文献   

9.
The potent mammalian immunohormone, 12-(S)-hydroxy-5,8,10,14-icosatetraenoic acid (12-(S)-HETE), is a 12-lipoxygenase metabolite of arachidonic acid that is widely distributed in animal tissues. In humans, it is produced and secreted by platelet cells and elicits both chemotactic and degranulatory responses in target neutrophils. As widely as 12-lipoxygenase activity and one of its major products, 12-(S)-HETE, have been found in animal tissues, it has never been found in plants. Herein, we report the first isolation of the 12-lipoxygenase product, 12-(S)-HETE, from a plant, the tropical marine alga Platysiphonia miniata (C. Agardh) B?rgesen.  相似文献   

10.
Rat platelets were isolated and labelled with [1-14C] arachidonic acid. After aggregation thromboxane B2, 12-hydroxy 5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-eicosatetraenoic acid (12-HETE) were the main metabolites formed. A comparison was made between several properties of the platelets of adrenalectomized and sham operated rats. There was no difference in collagen-induced aggregation. The amount of 12-HETE and the sum of TxB2 and 12-HETE formed from endogenous arachidonic acid after aggregation was higher in the first group.  相似文献   

11.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

12.
The biosynthesis of leukotrienes is known to occur through a series of complex processes which, in part, can be influenced by cell-cell interactions. Several studies have suggested that arachidonic acid availability is a major limiting step for leukotriene biosynthesis and that its transfer between cells can represent a significant source of this precursor. Accordingly, effect of time and source of arachidonic acid on transcellular leukotriene synthesis was studied in mixed platelet/neutrophil populations challenged with the calcium ionophore A23187. A time-dependent contribution of platelet-derived as well as neutrophil-derived arachidonate was found in the selective formation of neutrophil 5-lipoxygenase metabolites. Utilization of platelet or neutrophil arachidonate was followed by incorporation of radiolabeled arachidonic acid into platelet or neutrophil phospholipids prior to stimulation. Specific activity of liberated arachidonic acid along with numerous 5-lipoxygenase products (including LTB4, 20-hydroxy-LTB4, 5-HETE and LTC4) was determined in order to follow mass and radiolabel. A large amount of platelet-derived arachidonic acid was released in the first 1.5 min, whereas 10 min platelet-derived arachidonate was much lower in amount but significantly higher in specific activity, suggesting different precursor pools. The platelet-derived arachidonate was heavily utilized by the neutrophils at the early time points for formation of 5-HETE and delta 6-trans-LTB4 isomers, but appeared to contribute only marginally to the constitutive metabolism of neutrophil arachidonate into LTB4. Results from these experiments suggest different pools of 5-lipoxygenase in the neutrophil and indicate a time and source dependent modulation of arachidonate metabolism in mixed cell interactions.  相似文献   

13.
Caffeic acid is a selective inhibitor for leukotriene biosynthesis   总被引:16,自引:0,他引:16  
.eukotrienes are significantly involved in immunoregulation and in a variety of diseases, including asthma, inflammation and various allergic conditions. They are initially biosynthesized by 5-lipoxygenase from arachidonic acid, which can also be metabolized to prostaglandin endoperoxide by cyclooxygenase. The specific inhibitors for 5-lipoxygenase would be useful not only as tools for investigating the regulation mechanism of leukotriene biosynthesis, but also as drugs for clinical use. Although recently a few selective inhibitors have been reported, most of them are difficult to obtain, since they are new compounds. We found that caffeic acid, which is one of the most common reagents, is a selective inhibitor for 5-lipoxygenase and therefore for leukotriene biosynthesis. The inhibitory effect of its methyl ester on 5-lipoxygenase (ID50 = 4.8 X 10(-7) M) was stronger than that of caffeic acid itself (ID50 = 3.7 X 10(-6) M). Caffeic acid inhibited 5-lipoxygenase in a non-competitive manner. Caffeic acid and its methyl ester did not inhibit prostaglandin synthase activity at all, at least up to 5 X 10(-4) M, but rather stimulate at higher doses. The biosynthesis of leukotriene C4 and D4 in mouse mast tumor cells was also inhibited completely with 10(-4) caffeic acid. Besides, caffeic acid had little effect on arachidonic acid metabolism in platelet at less than 1 X 10(-5) M, but at higher doses it showed a definite inhibitory effect, i.e., thromboxane B2, HHT (12(S)-hydroxy-5,8,10-heptadecatetraenoic acid) and 12-HETE (12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid) syntheses were inhibited 33, 40 and 80% at 1 X 10(-4) M, respectively. Platelet aggregation induced by arachidonic acid was also inhibited by caffeic acid at high dose, while platelet aggregation induced by ADP is not influenced by caffeic acid at all. The observations on caffeic acid and its derivatives may contribute to leukotriene research.  相似文献   

14.
The relationship between 5-hydroxyeicosatetraenoic acid (5-HETE) and calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in prolactin (PRL) release was investigated in rat anterior pituitary cells. Arachidonic acid or 5-HETE, a 5-lipoxygenase metabolite of arachidonic acid, is known to cause a significant concentration-dependent increase in PRL release. Phorbol 12-myristate 13-acetate (PMA) and dioctanoyglycerol (diC8) have also been known to stimulate PRL release from pituitary cells, so we showed that these PRL releases were correlated with the activation of protein kinase C, that is, they induced dose-dependent translocation of protein kinase C from the cytosol to the membrane. Arachidonic acid, however, did not cause a significant change in the distribution of protein kinase C. We also showed that the PRL release induced by arachidonic acid and that induced by 5-HETE were additional to that by 100 nM PMA. Thus we suggested that the signals for the stimulation of PRL release sent by arachidonic acid and 5-HETE would be different from the signal sent through protein kinase C by PMA.  相似文献   

15.
Docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) was facilely incorporated into phospholipids of mouse peritoneal macrophages following incubation with pure fatty acids complexed to bovine serum albumin. Following stimulation with calcium ionophore A23187, the DHA-enriched cells synthesized significantly smaller amounts of leukotriene C4 and leukotriene B4 compared to control or EPA-enriched cells. The EPA-enriched cells synthesized lower amounts of leukotriene C4 and leukotriene B4 compared to control cells. The stimulated macrophages utilized endogenously released arachidonic acid for leukotriene B4 and leukotriene C4 synthesis. Exogenous arachidonic acid increased the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE and macrophages enriched with DHA or EPA produced similar amounts of 12-HETE and 15-HETE compared to control cells. These studies demonstrated that the synthesis of leukotriene C4, leukotriene B4 and HETE in macrophages is differentially affected by DHA and EPA.  相似文献   

16.
Analysis of arachidonic acid metabolites in human platelets by reverse-phase HPLC with radioactivity and UV detection revealed, besides Thromboxane B2 (TXB2), 12-hydroxy-heptadecatrienoic acid (HHT) and 12-hydroxy-eicosatetraenoic acid (12-HETE) previously described, two peaks of unidentified material absorbing at 280 nm. This material was purified by straight-phase HPLC and characterized by UV spectroscopy and gas chromatography-mass spectrometry. Three carbonyl compounds were identified: 12-keto-5,8,10,14-eicosatetraenoic acid and two geometric isomers of 12-oxo-5,8,10-dodecatrienoic acid. In a 5 min incubation at 37 degrees C in the presence of 9 microM arachidonic acid, the yield was of 0.5 to 1% of added arachidonic acid for the ketonic compound and of 4 to 7% for the sum of the two isomeric fatty acid aldehydes in comparison to 10 to 13% and 25 to 28% for TXB2 and 12-HETE, respectively. Because the three compounds carry a carbonyl group at position 12, their relationship with the 12-lipoxygenase pathway was investigated. It was found that the three compounds were formed when 12-hydroperoxy-eicosatetraenoic acid (12-HPETE) was incubated with intact or heat denaturated platelets or hemoproteins, strongly suggesting that these carbonyl compounds are products of a heme-catalysed transformation of 12-HPETE.  相似文献   

17.
Even though shear-induced platelet activation and aggregation have been studied for about 20 years, there remains some controversy concerning the arachidonic acid metabolites formed during stress activation and the role of thromboxane A2 in shear-induced platelet aggregation. In this study, platelets were labelled with [1-14C]arachidonic acid to follow the metabolism of arachidonic acid in stimulated platelets using HPLC and scintillation counting. Platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE). In contrast, for platelets activated by shear--though arachidonic acid metabolism was stimulated--only 12-HETE was formed and essentially no cyclooxygenase metabolites were detected. This indicates that physical forces may initiate a different pathway for eicosanoid metabolism than most commonly used chemical stimuli and perhaps also implies that regulation of the cyclooxygenase activity may be a secondary level of regulation in eicosanoid metabolism.  相似文献   

18.
This study investigates the effect of platelet/neutrophil interactions on eicosanoid production. Human platelets and polymorphonuclear leukocytes (PMNs) were stimulated alone and in combination, with calcium ionophore A23187 and the resulting eicosanoids 12S-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid (12-HETE), 12S-heptadecatrienoic acid (HHT), 5S,12R-dihydroxy-(6Z,8E,10E,14Z)-eicosatetraenoi c acid (LTB4) and 5S-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE) were measured by HPLC. The addition of PMNs to platelet suspensions caused a 104% increase in 12-HETE, a product of 12-lipoxygenase activity, but had only a modest effect on the cyclooxygenase product HHT (increase of 18%). By using PMNs labelled with [14C]arachidonic acid it was shown that the increases in these platelet eicosanoids could be accounted for by translocation of released arachidonic acid from PMNs to platelets and its subsequent metabolism. The observation that 12-lipoxygenase was about five times more efficient than cyclooxygenase at utilising exogenous arachidonic acid during the platelet/PMN interactions was confirmed in experiments in which platelets were stimulated with A23187 in the presence of [14C]arachidonic acid. Stimulations of platelets with thrombin in the presence of PMNs resulted in a decrease in 12-HETE and HHT levels of 40% and 26%, respectively. The presence of platelets caused a small increase in neutrophil LTB4 output but resulted in a decrease in 5-HETE production of 43% during stimulation with A23187. This study demonstrates complex biochemical interactions between platelets and PMNs during eicosanoid production and provides evidence of a mechanism to explain the large enhancement in 12-HETE production.  相似文献   

19.
Arachidonic acid metabolism by erythrocytes   总被引:2,自引:0,他引:2  
Rabbit, chicken, rat, and dog erythrocytes (10(9) cells/ml) synthesized immunologically active 12-hydroxyeicosatetraenoic acid (12-HETE) when stimulated by the Ca2+ ionophore, A-23187. The levels of immunologically active hydroxyeicosatetraenoic acid were independent of the number of white blood cells and platelets in the erythrocyte suspensions. Two products were resolved by high performance liquid chromatography; one product was identified as 12-HETE, while a second product appeared to be a dihydroxyeicosatetraenoic acid. Radiolabeled arachidonic acid was incorporated into phospholipids. Phosphatidylcholine and phosphatidylethanolamine were primary sources of the 12-HETE and dihydroxyeicosatetraenoic acid, all of which were released from the cells.  相似文献   

20.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号