首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Gu Z  Eleswarapu S  Jiang H 《FEBS letters》2007,581(5):981-988
We report the identification of bovine miRNAs by cloning small RNAs from adipose tissue and the mammary gland. Fifty-nine distinct miRNAs were identified, five of them were not homologous to known mammalian miRNAs, and many of them had 3' and/or 5' end variants. Ribonuclease protection assays indicated that miR-23a and miR-24, whose genes are closely located on the same chromosome, were co-expressed in different tissues. The assays also suggested a role for several miRNAs in the mammary gland and a role for miR-133, a previously known skeletal and cardiac muscle-specific miRNA, in the rumen, an organ unique to the ruminant.  相似文献   

10.
MicroRNA (miRNA) is critically involved in lipogenesis occurring in various body parts of humans and animals. In this study, to further investigate the role and distribution of miRNA in porcine intramuscular adipose tissue, small RNAs were extracted from Jinhua and Landrace pigs to identify the expression profiles of miRNAs. miRNA expression profiles revealed that 558 miRNAs including 287 known and 271 novel miRNAs were identified, and 220 of them showed differential expression in the pigs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested that the target genes of the differentially expressed miRNAs were involved in fatty metabolism. In conclusion, the current study reveals the active participation of miRNAs in the regulation of adipogenesis in the intramuscular adipose tissue of Jinhua and Landrace pigs.  相似文献   

11.
Li H  Xi Q  Xiong Y  Cheng X  Qi Q  Yang L  Shu G  Wang S  Wang L  Gao P  Zhu X  Jiang Q  Zhang Y  Yuan L 《PloS one》2011,6(9):e24883
MicroRNAs (miRNAs) are an abundant class of small RNAs that regulate expressions of most genes. miRNAs play important roles in the pituitary, the "master" endocrine organ.However, we still don't know which role miRNAs play in the development of pituitary tissue or how much they contribute to the pituitary function. By applying a combination of microarray analysis and Solexa sequencing, we detected a total of 450 miRNAs in the porcine pituitary. Verification with RT-PCR showed a high degree of confidence for the obtained data. According to the current miRBase release17.0, the detected miRNAs included 169 known porcine miRNAs, 163 conserved miRNAs not yet identified in the pig, and 12 potentially new miRNAs not yet identified in any species, three of which were revealed using Northern blot. The pituitary might contain about 80.17% miRNA types belonging to the animal. Analysis of 10 highly expressed miRNAs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the enriched miRNAs were involved not only in the development of the organ but also in a variety of inter-cell and inner cell processes or pathways that are involved in the function of the organ. We have revealed the existence of a large number of porcine miRNAs as well as some potentially new miRNAs and established for the first time a comprehensive miRNA expression profile of the pituitary. The pituitary gland contains unexpectedly many miRNA types and miRNA actions are involved in important processes for both the development and function of the organ.  相似文献   

12.
13.
14.
15.
MicroRNA-206: the skeletal muscle-specific myomiR   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
Chen C  Deng B  Qiao M  Zheng R  Chai J  Ding Y  Peng J  Jiang S 《PloS one》2012,7(2):e31426
The domestic pig (Sus scrofa), an important species in animal production industry, is a right model for studying adipogenesis and fat deposition. In order to expand the repertoire of porcine miRNAs and further explore potential regulatory miRNAs which have influence on adipogenesis, high-throughput Solexa sequencing approach was adopted to identify miRNAs in backfat of Large White (lean type pig) and Meishan pigs (Chinese indigenous fatty pig). We identified 215 unique miRNAs comprising 75 known pre-miRNAs, of which 49 miRNA*s were first identified in our study, 73 miRNAs were overlapped in both libraries, and 140 were novelly predicted miRNAs, and 215 unique miRNAs were collectively corresponding to 235 independent genomic loci. Furthermore, we analyzed the sequence variations, seed edits and phylogenetic development of the miRNAs. 17 miRNAs were widely conserved from vertebrates to invertebrates, suggesting that these miRNAs may serve as potential evolutional biomarkers. 9 conserved miRNAs with significantly differential expressions were determined. The expression of miR-215, miR-135, miR-224 and miR-146b was higher in Large White pigs, opposite to the patterns shown by miR-1a, miR-133a, miR-122, miR-204 and miR-183. Almost all novel miRNAs could be considered pig-specific except ssc-miR-1343, miR-2320, miR-2326, miR-2411 and miR-2483 which had homologs in Bos taurus, among which ssc-miR-1343, miR-2320, miR-2411 and miR-2483 were validated in backfat tissue by stem-loop qPCR. Our results displayed a high level of concordance between the qPCR and Solexa sequencing method in 9 of 10 miRNAs comparisons except for miR-1a. Moreover, we found 2 miRNAs, miR-135 and miR-183, may exert impacts on porcine backfat development through WNT signaling pathway. In conclusion, our research develops porcine miRNAs and should be beneficial to study the adipogenesis and fat deposition of different pig breeds based on miRNAs.  相似文献   

18.
The hormone-sensitive and lipoprotein lipases are critical determinants of the metabolic adaptation to starvation. Additionally, the uncoupling proteins have emerged with potential roles in the metabolic adaptations required by energy deficiency. The objective of this study was to evaluate the expression (mRNA abundance) of uncoupling proteins 2 and 3 and that of hormone-sensitive and lipoprotein lipase in the adipose tissue and skeletal muscle of the pig in relationship to feed deprivation. Thirty-two male castrates (87 kg +/- 5%) were assigned at random to fed and feed-deprived treatment groups. After 96 hr, the pigs were euthanized and adipose and skeletal muscle tissue obtained for total RNA extraction and nuclease protection assays. Feed deprivation increased uncoupling protein 3 mRNA abundance 103-237% (P < 0.01) in longissimus and red and white semitendinosus muscle. In contrast, the increase in uncoupling protein 3 mRNA in adipose tissue was only 23% (P < 0.06), and adipose uncoupling protein 2 mRNA was not influenced (P > 0.66) by feed deprivation. The increased abundance of uncoupling protein 2 mRNA in the longissimus muscle of feed-deprived pigs was small (22%), but significant (P < 0.04). The expression of hormone-sensitive lipase was increased 46% and 64% (P < 0.04) in adipose tissue and longissimus muscle, respectively, by feed deprivation, whereas adipose lipoprotein lipase expression was reduced (P < 0.01) to 20% of that of the fed group. Longissimus lipoprotein lipase expression in the feed-deprived group was 37% of that of the fed group (P < 0.01), and similar reductions were detected in red and white semitendinosus muscle. Overall, these findings indicate that uncoupling protein 3 expression in skeletal muscle is quite sensitive to starvation in the pig, whereas uncoupling protein 2 changes are minimal. Furthermore, we conclude that hormone-sensitive lipase is upregulated at the mRNA level with prolonged feed deprivation, whereas lipoprotein lipase is downregulated.  相似文献   

19.
MicroRNAs (miRNAs) are a class of ∼22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3′-untranslated regions (3′-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.  相似文献   

20.
Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号