首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The F9 murine embryonal carcinoma (EC) cell line, a well established model system for the study of retinoic acid (RA)-induced differentiation, differentiates into cells resembling three types of extra-embryonic endoderm (primitive, parietal and visceral), depending on the culture conditions and RA concentration used. A number of previously identified genes are differentially expressed during this process and serve as markers for the different endodermal cell types. Differentiation is also accompanied by a decreased rate of proliferation and an apoptotic response. Using homologous recombination, we have disrupted both alleles of the retinoid X receptor (RXR) alpha gene in F9 cells to investigate its role in mediating these responses. The loss of RXRalpha expression impaired the morphological differentiation of F9 EC cells into primitive and parietal endoderm, but has little effect on visceral endodermal differentiation. Concomitantly the inducibility of most primitive and parietal endoderm differentiation-specific genes was impaired, while several genes upregulated during visceral endodermal differentiation were induced normally. We also demonstrate that RXRalpha is required for both the anti-proliferative and apoptotic responses in RA-treated F9 cells. Additionally, we provide further evidence that retinoic acid receptor (RAR)-RXR heterodimers are the functional units transducing the effects of retinoids in F9 cells.  相似文献   

2.
Treatment of mouse embryonal carcinoma (F9) cells with retinoic acid, an inducer of F9 cell differentiation, greatly increased the level of mRNA specific to one of the heat-shock proteins (HSP86). Experiments including the one employing differentiation-resistant mutant F9 cells suggested that the increase represents early molecular events associated with the embryonal differentiation. The increased HSP86 mRNA declined to the original level during further incubation. The presence of cyclic AMP, which stimulates conversion of the retinoic acid-induced primitive endoderm cells to parietal endoderm cells, prevented the decline. These results suggest that not only the elevation of HSP86 mRNA level represents early molecular events in F9 cell differentiation but also that sustaining the elevated level (by cyclic AMP) is associated with further differentiation of the embryonal cells.  相似文献   

3.
4.
Treatment of embryonal carcinoma cells F9 with retinoic acid results in the appearance of epithelioid cells resembling endoderm which synthesize basement membrane protein and plasminogen activator. Concomitant with the appearance of these properties of differentiated cells, the epithelial cells cease to express SSEA-1, an antigenic determinant characteristic of teratocarcinoma stem cells and early mouse embryos. Our evidence indicates that the phenotypic changes that accompany retinoic acid treatment of embryonal carcinoma cells are irreversible and a consequence of the differentiation of the cells into endoderm.  相似文献   

5.
Cultures of F9 embryonal carcinoma cells treated with retinoic acid showed partial differentiation to endoderm cells as previously reported [Strickland, S., and Mahdavi, V. (1978).Cell15, 393–403]. Addition of dibutyryl cAMP to cultures pretreated with retinoic acid led to a second distinctive change in the cell population, with the formation of many neural-like cells. The appearance of these cells coincided with large increases in specific acetylcholinesterase activity of the cultures. Provided the cultures had been exposed to retinoic acid for at least 48 hr beforehand, the morphological and enzymatic changes became apparent between 24 and 48 hr after the addition of dibutyryl cAMP. The changes proceeded more abruptly and extensively when cells were grown in nongelatinized culture dishes. On gelatin-coated surfaces, the differentiated cells occasionally showed local areas of ordered arrangements. It is suggested that this system may be useful in analyzing early events in neural differentiation.  相似文献   

6.
The induction of differentiation in teratocarcinoma stem cells by retinoic acid.   总被引:170,自引:0,他引:170  
S Strickland  V Mahdavi 《Cell》1978,15(2):393-403
Embryonal carcinoma cells, the stem cells of teratocarcinomas, usually undergo extensive differentiation in vivo and in vitro to a wide variety of cell types. There exist, however, several embryonal carcinoma cell lines that have almost completely lost the capacity to differentiate, so that the cells are propagated primarily as the stem cells. Using one such cell line, F9, we have found that retinoic acid at concentrations as low as 10(-9) M induces multiple phenotypic changes in the cultures in vitro. These changes include morphological alteration at the resolution of the light microscope, elevated levels of plasminogen activator production, sensitivity to cyclic AMP compounds and increased synthesis of collagen-like proteins. The nature of these changes, as well as their independence of the continued presence of retinoic acid, are consistent with the proposition that retinoic acid induces differentiation of embryonal carcinoma cells into endoderm.  相似文献   

7.
We have previously cloned a novel guanine nucleotide-binding protein (G-protein)-coupled receptor, H218, that has sequence similarity to a lysophosphatidic acid receptor, edg2. We present here Northern analysis indicating that the H218 mRNA is expressed in undifferentiated F9 embryonal carcinoma cells. The H218 message is down-regulated and its stability is decreased during retinoic acid- and dibutyryl cAMP-induced differentiation. Treatment by various receptor-selective retinoids indicated that retinoic acid receptor β or γ signaling, but not retinoid X receptor activation, is required for the down-regulation of H218 mRNA. Activation of the H218 receptor may contribute to the phenotype of undifferentiated F9 embryonal carcinoma cells.  相似文献   

8.
Two unrelated multipotent embryonal carcinoma cell lines, OC-15S1 and 1003, have been cultured in hormone-supplemented defined media in order to identify the signals that influence their differentiation. Previous studies have shown that F9 embryonal carcinoma cells can be grown for many generations in the defined medium, EM-3, which contains fibronectin, insulin, and transferrin in place of serum. F9 cells, which only differentiate into a few cell types, undergo little or no differentiation in EM-3 unless an inducer is present (A. Rizzino and C. Crowley, 1980, Proc. Natl. Acad. Sci. USA77, 457–461). This report demonstrates that, in contrast to F9, OC-15S1 and 1003 embryonal carcinoma cells do not proliferate in EM-3. Instead, the cells differentiate. However, the differentiated cells do not survive in EM-3 unless it is supplemented with factors such as purified serum lipoproteins. In EM-3 containing high-density lipoprotein, a population of differentiated cells, devoid of embryonal carcinoma cells, is formed. The differentiated cells that appear exhibit an epithelioid morphology throughout the culture. These cells also secrete plasminogen activator and two different criteria argue that it is the type released by parietal endoderm. This suggests that, under the influence of the defined medium, both multipotent embryonal carcinoma cell lines differentiate at high frequency into parietal endoderm. It was also determined that fibronectin promotes the differentiation of OC-15S1 and 1003 in serum-containing media, and this suggests that fibronectin is at least partly responsible for the differentiation observed in EM-3 plus high-density lipoprotein. In light of these findings, it is suggested that fibronectin may directly influence cellular differentiation during early mammalian development.  相似文献   

9.
10.
The growth rate of malignant F9 embryonal carcinoma cells slows considerably following all-trans-retinoic acid-induced differentiation into benign parietal endoderm. To determine the mechanism of this process, we examined the expression of cyclins D1, D2, and D3 and the activity of their associated kinases. Cyclin D1 and D3 mRNA levels decreased during complete differentiation induced by all-trans-retinoic acid and dibutyryl cAMP, while the levels of cyclin D2 and the cyclin-dependent kinase (Cdk) inhibitor p27 mRNAs increased. Ultimately, terminally differentiated cells possessed 50% of the Cdk4-associated kinase activity observed in undifferentiated cells. Since numerous genes are differentially regulated during parietal endoderm differentiation, it is difficult to determine whether retinoic acid affects cell cycle gene expression directly or if these changes are caused by differentiation. We found that the retinoid X receptor (RXR)-selective agonists LG100153 and LG100268 significantly inhibited F9 cell growth without causing overt terminal differentiation as assessed by anchorage-independent growth and differentiation-associated gene expression. As seen in cells induced to differentiate by the RAR agonist all-trans-retinoic acid, RXR activation led to an increase in the number of cells in G1 phase. RXR agonists also sharply induced the levels of the Cdk regulatory subunits, cyclin D2 and D3. However, Cdk4-dependent kinase activity was reduced by RXR-selective retinoid treatment. These observations suggest that some retinoids can directly inhibit proliferation and regulate Cdk4-dependent kinase activity without inducing terminal differentiation.  相似文献   

11.
Gap junctional communication permits the direct intercellular exchange of small molecules and ions. In vertebrates, gap junctions are formed by the conjunction of two connexons, each consisting of a hexamer of connexin proteins, and are either established or degraded depending on the nature of the tissue formed. Gap junction function has been implicated in both directing developmental cell fate decisions and in tissue homeostasis/metabolite exchange. In mouse development, formation of the extra embryonal parietal endoderm from visceral endoderm is the first epithelial-mesenchyme transition to occur. This transition can be mimicked in vitro, by F9 embryonal carcinoma (EC) cells treated with retinoic acid, to form (epithelial) primitive or visceral endoderm, and then with parathyroid hormone-related peptide (PTHrP) to induce the transition to (mesenchymal) parietal endoderm. Here, we demonstrate that connexin43 mRNA and protein expression levels, protein phosphorylation and subcellular localization are dynamically regulated during F9 EC cell differentiation. Dye injection showed that this complex regulation of connexin43 is correlated with functional gap junctional communication. Similar patterns of connexin43 expression, localization and communication were found in visceral and parietal endoderm isolated ex vivo from mouse embryos at day 8.5 of gestation. However, in F9 cells this tightly regulated gap junctional communication does not appear to be required for the differentiation process as such.  相似文献   

12.
alpha-Difluoromethylornithine (DFMO), a highly selective inhibitor of ornithine decarboxylase (ODC), induced terminal differentiation of F9 mouse embryonal carcinoma cells in culture. Differentiation was assessed using morphological criteria and the level of plasminogen activator activity. The observed phenotypic changes and the fact that the cells did not synthesize alpha-fetoprotein, indicate that they were parietal endoderm cells. The putrescine, spermidine and spermine content of untreated control cells increased during exponential growth and then decreased gradually with continued time in culture. The increases in putrescine and spermidine contents were prevented by DFMO treatment. In fact, the putrescine and spermidine content decreased below the limits of detection after only one day of treatment. The addition of putrescine to the culture medium at any time within 4 days of DFMO treatment, prevented the DFMO-induced differentiation, suggesting that the effects observed were indeed caused by polyamine depletion. The phenotypic changes induced by DFMO were similar to those induced by retinoic acid, a very potent inducer of embryonal carcinoma differentiation. Although retinoic acid can inhibit ODC activity and putrescine accumulation, it is unlikely that this mechanism of action is responsible for retinoic acid-induced F9 cell differentiation, inasmuch as putrescine addition did not prevent the expression of the differentiated phenotype. Undifferentiated F9 embryonal carcinoma cells exhibited a very short G1 phase, and in this respect they are similar to the cells of the preimplantation mouse embryo. In control (exponentially growing) cultures a majority of the F9 cells were in the S phase, but in DFMO-treated cultures they accumulated in the G1 phase and showed no further proliferative potential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
It has been suggested that cell position regulates endodermal differentiation in mouse embryo inner cell masses and in aggregates of embryonal carcinoma (EC) cells. This hypothesis states that cells at the interface between the cell mass and blastocoel fluid or culture medium differentiate into endoderm, whereas internally located cells follow alternative developmental pathways. To test the cell position hypothesis, pluripotent PSA-1 cells were aggregated with hypoxanthine phosphoribosyltransferase-deficient, parietal-like, endodermal cells. The resulting aggregates consisted of cores of PSA-1 cells surrounded by endodermal cells. Autoradiography was used to distinguish between endodermal cells that were the products of EC cell differentiation and the exogenous endoderm. Alkaline phosphatase staining was used to distinguish EC cells from endodermal cells. As predicted by the cell position hypothesis, the PSA-1 EC cells, all of which were internally located, did not differentiate into endodermal cells. Nonspecific inhibition of differentiation did not account for the lack of PSA-1-derived endoderm since the PSA-1 cells in such aggregates did differentiate into columnar ectodermal-like cells. Similar experiments were also conducted with F9 cells. In this case, aggregation cultures contained retinoic acid to induce F9 cells to differentiate into visceral endoderm. In cultures containing F9 cells surrounded by parietal-like endodermal cells, no F9-derived endoderm was detected either autoradiographically or by assaying for alpha-fetoprotein production, a visceral endoderm marker. Thus, retinoic acid-induced endodermal differentiation was also regulated by cell position. Collectively, the above results provide strong evidence for the hypothesis that cell position regulates endodermal differentiation in aggregates of EC cells.  相似文献   

14.
15.
Embryonal carcinoma cells from the PSA1 cell line will differentiate in vitro to form structures called embryoid bodies composed of an inner core of embryonal carcinoma cells surrounded by a basement membrane matrix and an outer layer of extra-embryonic endodermal cells. Immunization of rabbits with basement membranes isolated from embryoid bodies resulted in an antiserum, which binds to fixed extra-embryonic endodermal cells of either embryonic or teratocarcinoma origin but does not bind substantially to mouse embryonal carcinoma cells, fibroblasts, myoblasts or erythroleukemic cells. The F9-22 embryonal carcinoma cell line normally differentiates only to a very limited extent in vitro or in vivo. However, incubation of these cells in medium containing retinoic acid results in the appearance of cells resembling extra-embryonic endoderm. The embryoid body basement membrane antibodies were used to measure, by flow microfluorometry, the appearance of reactive cells in F9-22 cultures treated with retinoic acid. The kinetics of appearance of cells reactive with the basement membrane antibodies are similar to the kinetics of appearance of cells secreting plasminogen activator, a known marker of extraembryonic endoderm.  相似文献   

16.
A novel cell surface marker of fetal development was identified in both in vivo and in vitro systems of the mouse using monoclonal antibodies against a glycoprotein of an apparent size of 133,000 Da. Two independent clones of hybridomas were isolated by fusing murine myeloma cells, NS-1, with spleen cells of a rat which was immunized with murine 3T3 fibroblast. The analysis of molecular size and tryptic peptides of the immunoprecipitate indicated that fibroblast and putative parietal endoderm cells, which were derived by induced differentiation of F9 embryonal carcinoma cells with retinoic acid and cyclic AMP, expressed apparently the same protein. Undifferentiated F9 cells and F9 cells which were treated with retinoic acid or cyclic AMP alone had little or no immunoprecipitable proteins. Analogously, parietal endoderm of in vivo embryos tested positive for this protein but visceral endoderm and embryonic ectoderm did not. The amount of this surface protein was increased in fibroblast and differentiated F9 cells by elevation of intracellular cyclic AMP concentrations. These results are consonant with a hypothesis that this surface protein plays a role in fetal development via a quantitative modulation by cyclic AMP.  相似文献   

17.
18.
MK gene was intensely expressed, when aggregates of HM-1 embryonal carcinoma (EC) cells were treated with retinoic acid for 2 days to induce the differntiation to nerve cells, myoblasts and extraembryonic endoderm cells. The conditions inhibiting nerve cell diffrentiation or extraembryonic endoderm cell differentiation affected MK gene expression only slightly. The maximum level of MK RNA was detected 2 days after initiation of retionic acid treatment, when cells were morphologically indistinguishable from undifferentiated EC cells. Thus, MK gene appears to be expressed in differentiating EC cells irrespective of the direction of differentiation. The degree of MK gene expression in sparsely cultured HM-1 cells correlated with the concentration of retinoic acid, especially between 10-8 and 10-7 M. When retinoic acid treatment was terminated after 1 day, the amount of MK RNA started to decrease. These two results are consistent with the view that retionic acid complexed with the receptor is directly involved in expression of MK gene.  相似文献   

19.
20.
M J Rosenstraus  A J Levine 《Cell》1979,17(2):337-346
Pluripotent embryonal carcinoma cells can be triggered to differentiate in vitro by allowing them to form multicellular aggregates. Nullipotent embryonal carcinoma cells form aggregates, but further development is blocked. Pluripotent and nullipotent embryonal carcinoma cell lines were co-cultured to form mixed aggregates in order to determine whether a developmental signal produced by the pluripotent cell could induce the nullipotent cells to differentiate. Unlike pure pluripotent cell aggregates, aggregates from cultures initiated with a 1:1 mixture of pluripotent (PSA-1) and nullipotent (F9) cells formed endoderm but failed to differentiate further. The nullipotent cells did not produce a detectable soluble inhibitor of differentiation. A hypoxanthine phosphoribosyltransferase-deficient subclone of the nullipotent cell line was used so that the fate of both nullipotent and pluripotent cells could be followed in autoradiographs of histological sections of aggregates labeled with 3H-hypoxanthine. Seven day old aggregates of pure pluripotent cell cultures contained endoderm, ectoderm and embryonal carcinoma cells. On the other hand, in 7 day old mixed cell aggregates, almost all the pluripotent cells became endoderm located on the outer surface of the aggregate. The nullipotent cells in the mixed aggregates assumed an internal position and remained embryonal carcinoma cells. Following the efficiency of plating of pluripotential cells in pure and mixed aggregates as a function of time showed that viable pluripotent embryonal carcinoma cells were lost at a 10 fold greater rate in mixed cell aggregates than in pure pluripotent cell aggregates. We conclude that nullipotent embryonal carcinoma cells in mixed aggregates with pluripotent cells exert a limitation on the ability of these pluripotent cells to differentiate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号