首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loss of microbial biodiversity due to the increase in large-scale industrial processes led to the study of the natural microflora present in a typical little known dairy product. The community of lactobacilli was studied in order to understand the natural fermentation of Ricotta forte cheese. The combined use of RAPD analysis, 16S rDNA sequencing and physiological tests allowed 33 different strains belonging to 10 species of Lactobacillus to be characterized. RAPD analysis revealed the heterogeneity of both the Lact. kefiri and Lact. paracasei species. The sequence analysis of the large 16S/23S rRNA spacer region enabled Lact. plantarum to be distinguished from Lact. paraplantarum, two closely related species belonging to the Lact. plantarum group. The recovery of strains endowed with interesting physiological characteristics, such as strong stress resistance, could improve technological and/or organoleptic characteristics of Ricotta forte cheese and other fermented foods.  相似文献   

2.
Aims:  Species-specific primers targeting the 16S–23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis , Lactobacillus panis , Lactobacillus paralimentarius , Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough.
Methods and Results:  The 16S–23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388–1406 of the 16S rRNA gene and to positions 207–189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331 ). Clone libraries of the resulting amplicons were constructed using a pCR2·1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S–23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNAIle and tRNAAla genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested.
Conclusions:  Designed species-specific primers enable a rapid and accurate identification of L. mindensis , L. paralimentarius , L. panis , L. pontis and L. frumenti species among other lactobacilli.
Significance and Impact of the Study:  The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.  相似文献   

3.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

4.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

5.
Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.  相似文献   

6.
A rapid, systematic and reliable approach for identifying lactic acid bacteria associated with meat was developed, allowing for detection of Carnobacterium spp., Lactobacillus curvatus, Lact. sakei and Leuconostoc spp. Polymerase chain reaction primers specific for Carnobacterium and Leuconostoc were created from 16S rRNA oligonucleotide probes and used in combination with species-specific primers for the 16S/23S rRNA spacer region of Lact. curvatus and Lact. sakei in multiplex PCR reactions. The method was used successfully to characterize lactic acid bacteria isolated from a vacuum-packaged pork loin stored at 2 degrees C. Seventy isolates were selected for identification and 52 were determined to be Lact. sakei, while the remaining 18 isolates were identified as Leuconostoc spp.  相似文献   

7.
Twenty-seven Lactobacillus plantarum ssp. plantarum, 11 Lactobacillus paraplantarum and five Lactobacillus casei-related strains, isolated from various autochthonous Serbian and Montenegro-fermented foods, were identified using phenotypical characterization and current PCR methods based on PCR of the recA gene or the 23S-5S rRNA gene intragenic spacer (IS) region. The strains were genotypically characterized by a new method based on the insertion sequence element ISLpl11 that grouped these lactobacilli into 10 IS-fingerprinting groups. Between six and 23 copies of the ISLpl1 were found in each strain and the ISLpl1-fingerprint groups correlated well with the origin of the strains. The method proved suitable for strain typing of lactic acid bacteria at the infraspecies level.  相似文献   

8.
Aims:  The study of proteolytic activity and examination of proteinase gene region organization in proteolytically active Lactobacillus plantarum strains from different natural sources.
Methods and Results:  A set of 37 lactobacilli was distinguished by using multiplex PCR assay. Results showed that 34 strains were Lact. plantarum and three of them were Lact. paraplantarum . The examination of proteolytic activity revealed that 28 Lact.   plantarum and two Lact.   paraplantarum hydrolyse β-casein. Further analyses of all proteolytically active Lact. plantarum with primers specific for different types of CEPs demonstrated that strain BGSJ3–18 has prtP catalytic domain as well as prtP – prtM intergenic region showing more than 95% sequence identity with the same regions present in Lact. paracasei , Lact. casei and L. lactis . No presence of prtB , prtH or prtR proteinase genes was detected in any of tested Lact. plantarum strains.
Conclusions:  One out of 28 analysed Lact. plantarum strains harbours the prtP -like gene. The other proteolytically active Lact. plantarum probably possesses a different type of extracellular proteinase(s).
Significance and Impact of the Study:  It is the first report about the presence of the prtP –like gene in Lact. plantarum , which illustrates the mobility of this gene and its presence in different species.  相似文献   

9.
Lactobacillus sakei strains were characterized by the shift of the type of stereoisomers of lactic acid produced in the presence of 50 mM sodium acetate in a medium. Of 27 Lactobacillus sakei strains studied, 20 strains showed high levels of DNA-DNA similarity with L. sakei NRIC 1071(T), and were confirmed as L. sakei. The three remaining strains were identified as Lactobacillus curvatus by DNA-DNA similarity, and three other strains were included in the cluster of Lactobacillus plantarum/Lactobacillus pentosus/Lactobacillus paraplantarum and one strain in the cluster of Lactobacillus paracasei on the basis of 16S rRNA gene sequences. Of the 20 L. sakei strains, 19 strains shifted the type of stereoisomers of lactic acid produced from the DL-type to the L-type in the presence of 50 mM sodium acetate. L. curvatus strains and strains included in the cluster of L. plantarum/L. pentosus/L. paraplantarum and in the cluster of L. paracasei did not shift the type of stereoisomers of lactic acid produced. The change of the type of stereoisomers of lactic acid from the DL-type to the L-type in the presence of sodium acetate was concluded to be species-specific for L. sakei and useful for identification of strains in this species.  相似文献   

10.
A total of 77 tannase producing lactobacilli strains isolated from human feces or fermented foods were examined for their genotypic profiles and intensities of tannase production. With a PCR-based assay targeting recA gene, all strains except one isolate were assigned to either Lactobacillus plantarum, L. paraplantarum, or L. pentosus whereas a 16/23S rDNA targeted PCR-based assay identified all except 6 isolates (inclusive of the above one isolate) as one of the closely related species. Subsequent DNA/DNA hybridization assays revealed that these 6 exceptional isolates showed low homology (between 1.2% and 55.8% relative DNA binding) against type strains of the three species. Supplemental carbohydrate fermentation profiles on the 6 isolates indicated that two of them were identified as L. acidophilus, one as Pediococcus acidilactici, one as P. pentosaceus, and two remained unidentifiable. The evidence suggests that the 16/23S rDNA targeted PCR assay can be used as a reliable identification tool for the closely related lactobacilli, and that the tannase gene is widely distributed within members of the Lactobacillaceae family. Meanwhile, a randomly amplified polymorphism DNA (RAPD) analysis revealed that all except 8 isolates were well allocated in 4 major RAPD clusters, though not species specific, consisting of two L. plantarum predominant clusters, one L. paraplantarum predominant, and one L. pentosus predominant. The RAPD patterns of the 8 non-clustered isolates, which consisted of the 6 unidentifiable isolates and 2 isolates identified as L. pentosus, were <40% similarity to those belonging to the 4 clusters. A quantitative assay of the tannase activities showed that there was a marked variation in the activities among the strains, which did not correlate with either species identification or clustering by RAPD.  相似文献   

11.
A rapid and reliable PCR-based method for distinguishing closely related species within two groups of lactobacilli is described. Primers complementary to species-specific sequences in the 16S/23S rDNA spacer regions were designed after sequencing and sequence comparison of the spacer regions of 32 strains. The strains belong to two groups of closely related Lactobacillus species; one composed of Lactobacillus curvatus, Lactobacillus graminis and Lactobacillus sake, the other of Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus plantarum. PCR assays with the designed primers and subsequent agarose gel analysis of the amplified fragments allowed the same species identification as the DNA/DNA hybridization procedure.  相似文献   

12.
AIMS: A molecular methodology based on PCR-associated automated ribotyping was developed to specifically detect the Lactobacillus strains of two probiotic products (an orally administered lyophilized preparation and vaginal tablets) in human faeces and vaginal swabs. METHODS AND RESULTS: The 16S-23S rDNA sequences and the ribotype profiles of the probiotic lactobacilli were characterized and new species-specific primer sets were designed. The identification of faecal and vaginal lactobacilli isolated from subjects administered with the probiotic products was performed by using PCR with species-specific primers followed by strain-specific automated ribotyping. CONCLUSIONS: The PCR-ribotyping identification allowed to study the colonization patterns of the probiotic lactobacilli in the human gut and vagina evidencing the strains with the best survival capability. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed molecular method represents a powerful tool of strain-specific identification, useful for differentiating exogenous from indigenous strains in any microbial ecosystem and for rationally choosing probiotic bacteria with the best chance of survival in the host.  相似文献   

13.
AIMS: To develop species-specific monitoring techniques for rapid detection and identification of Lactobacillus isolated from mouse faeces. METHODS AND RESULTS: The specificity of oligonucleotide probes was evaluated by dot blot hybridization to 16S rDNA and 23S rDNA amplified by PCR from 12 Lactobacillus type strains and 100 strains of Lactobacillus isolated from mouse faeces. Oligonucleotide probes specific for each Lactobacillus species hybridized only with targeted rDNA. The Lactobacillus strains isolated from mouse faeces were identified mainly as Lactobacillus intestinalis, L. johnsonii, L. murinus and L. reuteri using species-specific probes. 16S rDNA of eight unidentified isolates were sequenced and two new probes were designed. Four of eight strains of unhybridized Lactobacillus were identified as L. johnsonii/gasseri group, and the remaining four strains as L. vaginalis. CONCLUSIONS: The species-specific probe set of L. intestinalis, L. johnsonii, L. murinus, L. reuteri and L. vaginalis in this study was efficient for rapid identification of Lactobacillus isolated from mouse faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: The oligonucleotide probe set for Lactobacillus species harboured in the mouse intestine, can be used for rapid identification of lactobacilli and monitoring of the faecal Lactobacillus community.  相似文献   

14.
AIMS: This paper reports a simple, rapid approach for the parallel detection of Lactobacillus plantarum and Lact. rhamnosus in co-culture in order to produce an inoculant mixture for silage purposes. METHODS AND RESULTS: The 16S rDNA-targeted PCR primers were established for parallel detection of Lact. plantarum and Lact. rhamnosus in a single multiplex PCR. A protocol for application of these primers in direct PCR as well as colony-direct (CD) PCR was developed. These primers were also applicable for the estimation of the relative amount of each DNA type in mixed probes (semi-quantitative PCR). CONCLUSIONS: The PCR assay presented in this study is a robust, fast and semi-quantitative approach for detection of Lact. plantarum and Lact. rhamnosus in liquid cultures as well as on agar plates. SIGNIFICANCE AND IMPACT OF THE STUDY: This method provides an effective tool for the establishment of a regime for co-cultivation of Lact. plantarum and Lact. rhamnosus. This would enable faster and thus cost-reduced production of ensiling inoculants.  相似文献   

15.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

16.
Two high-resolution genotypic techniques (RAPD-PCR and AFLP) were evaluated for their possibility to discriminate the species Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum and to type these taxa at the infra-species level. In total 23 strains of L. plantarum, three strains of L. pentosus, two strains of L. paraplantarum and two related strains for which the species assignment was not clear, were studied. For RAPD-PCR, suitable oligonucleotides and amplification conditions were selected and tested. For AFLP, a double digest of total genomic DNA was used and a subset of restriction fragments was selectively amplified and visualised using different primer combinations. Both methodologies generated, species-specific electrophoretic profiles. Moreover, the presence of distinct subgroups was revealed within the species L. plantarum.  相似文献   

17.
Two closely related lactic acid bacteria, Lactobacillus sakei and Lactobacillus curvatus, are very difficult to be rapidly differentiated. Here we report multiplex polymerase chain reaction (PCR)-based restriction enzyme analysis that is useful for rapid and reliable identification of these two species. This method employs both polymerase chain reaction (PCR) and restriction enzyme analysis (REA). First, multiplex-PCR using three primers that were designed from 16S rDNA sequence produces two bands, a 433-bp and a 623-bp band. A 433-bp band represents only L. sakei and L. curvatus among lactobacilli and genetically related bacteria, and a 623-bp band is used for further identification by restriction analysis. Second, restriction analysis of 623-bp band using Hind III restriction enzyme discriminates L. sakei from L. curvatus. This method could identify 28 strains as L. sakei or L. curvatus, which were frequently isolated from kimchi, a traditional fermented cabbage product in South Korea. Therefore, these results suggest that this method is simple, rapid, and reliable for the identification of L. sakei and L. curvatus species.  相似文献   

18.
Ribosomal rRNA gene fragments (rDNA) encompassing the 16S rDNA, the 16S-23S rDNA spacer region and part of the 23S rDNA of 95 strains belonging to 13 well-described taxa of the eubacterial family Comamonadaceae (beta subclass of the Proteobacteria or rRNA superfamily III) were enzymatically amplified using conserved primers. The fragments of approximately 2400 base pairs were subjected to restriction analysis. Restriction fragment length patterns obtained with HinfI enabled us to distinguish 9 of the 13 taxa studied. Restriction with CfoI was necessary to differentiate Acidovorax delafieldii from A. temperans and Hydrogenophaga flava from H. pseudoflava. The results indicate that amplified rDNA restriction analysis is a simple and reliable tool for the identification of bacterial species.  相似文献   

19.
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.  相似文献   

20.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号