首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

2.
The effect of chromatin structure on the binding of a chemical carcinogen to the genomic DNA was studied. The binding in vivo of the ultimate carcinogen, benzo-pyrene 7,8,-diol,-9,10-epoxide, to various regions of the SV40 chromosome was revealed by an immunological method. Particular attention was given to restriction fragments which include the origin of replication which is "non-nucleosomal" in a significant fraction of the chromosomes. The distribution of (+/-) trans-7,8-dihydrobenzo[alpha]pyrene-7,8-diol-9,10-epoxide (BPDE) adducts was studied in 1) SV40 DNA modified in vitro to a level of 20 adducts/molecule, 2) DNA from SV40 chromosomes modified in vivo to a level of less than 1 adduct, and 3) DNA from only those chromosomes with an open origin of replication. In other experiments, the binding of BPDE to the origin region was compared to the binding to nucleosome core particle DNA from the viral chromosome. The origin region bound 1.7-fold more BPDE than core DNA, while linker DNA is 3-fold more modified than core DNA. However, the origin region was only about 20% more modified than any other region of the chromosome. We conclude that while the conformation of the DNA in chromatin has a slight effect on its accessibility to the carcinogen, the SV40 chromosome does not contain a particular "hot spot" which is preferentially modified by BPDE.  相似文献   

3.
L Marty  C Cajean  F Suarez  M Girard 《Biochimie》1976,58(9):1113-1122
The technique of density labeling of DNA by BrdU was used to characterize the material synthesized in vitro by cytoplasmic extracts of SV40 infected cells incubated in the presence of simian virus 40 (SV40) DNA component I molecules (Girard et al, Biochimie, this volume). In a first experiment, the template was labeled beforehand in vivo using [14C]-BrdU, and the in vitro incubation was carried out in the presence of [3H]-dGTP and [3H]-dTTP. In a second experiment, the template was labeled in vivo with 32P, and the in vitro incubation was in the presence of [3H]-dGTP and BrdUTP. After digestion with the restriction endonuclease Hind II + III, the fragments from the end products of the reaction were analyzed by density gradient centrifugation, at pH 7 and pH 13. In both experiments the DNA product molecules had the same density as the resepctive DNA templates. Cellular enzymes seem to be responsible for this in vitro synthesis of DNA, since cytoplasmic extracts from uninfected cells were almost as active as those from SV40 infected cells. The system was proved efficient in the conversion of "open circular" molecules (component II DNA molecules) to covalently closed circular DNA molecules (relaxed component I molecules). The use of DNA complexed with histones did not impart viral specificity to the system. It is concluded that the cytoplasmic extract is only capable of supporting the repair synthesis of added viral DNA.  相似文献   

4.
5.
Y Chu  T S Huang    M T Hsu 《Nucleic acids research》1990,18(13):3705-3711
Under exhaustive digestion conditions P1 nuclease was found to cleave a subpopulation of intracellular SV40 chromatin only once. The major P1 cleavage site in SV40 DNA was mapped at the origin of DNA replication, and the two minor sites at the SV40 enhancers. The P1-sensitive SV40 chromatin subpopulation was found to have higher superhelical density than the bulk of the intracellular SV40 chromatin. Furthermore, pulse labeled SV40 DNA which had higher superhelical density than that of the steady state viral DNA (S.S.Chen and M.T.Hsu, J.Virol 51:14-19, 1984) was also found to be preferentially cleaved by P1 nuclease. These results are consistent with a supercoil-dependent alteration of chromatin conformation near the regulatory region of the viral genome that can be recognized by P1 nuclease. Since P1 nuclease cleaves the subpopulation of SV40 chromatin only once without further degradation, this nuclease can be used as a general tool to define viral or cellular chromatin fraction with altered chromatin conformation and to map nuclease hypersensitive sites. Preliminary studies indicate that P1 makes limited double stranded cleavages in cellular chromatin to generate large DNA fragments.  相似文献   

6.
Exonucleases specific for either 3' ends (Escherichia coli exonuclease III) or 5' ends (bacteriophage T7 gene 6 exonuclease) of nascent DNA chains have been used to determine the number of nucleotides from the actual sites of DNA synthesis to the first nucleosome on each arm of replication forks in simian virus 40 (SV40) chromosomes labeled with [3H]thymidine in whole cells. Whereas each enzyme excised all of the nascent [3H]DNA from purified replicating SV40 DNA, only a fraction of the [3H]DNA was excised from purified replicating SV40 chromosomes. The latter result was attributable to the inability of either exonuclease to digest nucleosomal DNA in native replicating SV40 chromosomes, as demonstrated by the following observations: (i) digestion with either exonuclease did not reduce the amount of newly synthesized nucleosomal DNA released by micrococcal nuclease during a subsequent digestion period; (ii) in briefly labeled molecules, as much as 40% of the [3H]DNA was excised from long nascent DNA chains; (iii) the fraction of [3H]DNA excised by exonuclease III was reduced in proportion to the actual length of the radiolabeled DNA; (iv) the effects of the two exonucleases were additive, consistent with each enzyme trimming only the 3' or 5' ends of nascent DNA chains without continued excision through to the opposite end. When the fraction of nascent [3H]DNA excised from replicating SV40 DNA by exonuclease III was compared with the fraction of [32P]DNA simultaneously excised from an SV40 DNA restriction fragment, the actual length of nascent [3H]DNA was calculated. From this number, the fraction of [3H]DNA excised from replicating SV40 chromosomes was converted into the number of nucleotides. Accordingly, the average distance from either 3' or 5' ends of long nascent DNA chains to the first nucleosome on either arm of replication forks was found to be 125 nucleotides. Furthermore, each exonuclease excised about 80% of the radiolabel in Okazaki fragments, suggesting that less than one-fifth of the Okazaki fragments were contained in nucleosomes. On the basis of these and other results, a model for eukaryotic replication forks is presented in which nucleosomes appear rapidly on both the forward and retrograde arms, about 125 and 300 nucleotides, respectively, from the actual site of DNA synthesis. In addition, it is proposed that Okazaki fragments are initiated on nonnucleosomal DNA and then assembled into nucleosomes, generally after ligation to the 5' ends of long nascent DNA chains is completed.  相似文献   

7.
When nascent DNA of SV40 pulse labeled with [alpha-32p]dCTP in a permeable cell system was treated in situ with diisopropylfluorophosphate (DFP), a significant fraction of radioactivity was found to be covalently complexed with proteins. The adduct formation was demonstrated by density separation in CsCl, selective precipitation of the complexed DNA with SDS-KC1, and visualization of cross-linked proteins after SDS-PAGE. No cross-linking occurred with mature SV40 chromatin labeled in vivo and extracted from nuclei of infected cells. The DFP-induced DNA-protein cross-linking reaction appears to involve the protein's sulfhydryl groups since pretreatment with some sulfhydryl reagents completely inhibited the reaction.  相似文献   

8.
L Yang  T C Rowe  E M Nelson  L F Liu 《Cell》1985,41(1):127-132
The antitumor drug, m-AMSA (4'-(9-acridinylamino)-methanesulfon-m-anisidide), is known to interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by blocking the enzyme-DNA complex in its putative cleavable state. Treatment of SV40 virus infected monkey cells with m-AMSA resulted in both single- and double-stranded breaks on SV40 viral chromatin. These strand breaks are unusual because they are covalently associated with protein. Immunoprecipitation results suggest that the covalently linked protein is DNA topoisomerase II. These results are consistent with the proposal that the drug action in vivo involves the stabilization of a cleavable complex between topoisomerase II and DNA in chromatin. Mapping of these double-stranded breaks on SV40 viral DNA revealed multiple topoisomerase II cleavage sites. A major topoisomerase II cleavage site was preferentially induced during late infection and was mapped in the DNAase I hypersensitive region of SV40 chromatin.  相似文献   

9.
Maturation of newly replicated chromatin of simian virus 40 and its host cell   总被引:13,自引:0,他引:13  
The DNA in replicating simian virus 40 chromatin and cellular chromatin was labeled with short pulses of [3H]thymidine. The structure of pulse-labeled nucleoprotein complexes was studied by micrococcal nuclease digestion. It was found that in both newly replicated viral and cellular chromatin, a structural state appears which is characterized by an increased sensitivity to nuclease and a faster than usual rate of cleavage to DNA fragments of monomeric nucleosome size and smaller. Pulse-chase experiments show that each of these effects requires a characteristic time to disappear in both systems, suggesting the existence of different sub-processes of chromatin maturation. One of these processes, detectable by the reversion of the unusually fast production of subnucleosomal fragments, is delayed in SV40 chromatin replication.  相似文献   

10.
Protein species interacting with newly replicated DNA were analyzed using a photo cross-linking technique. Nascent DNA was labeled in vitro with [alpha-32P]dCTP and BrdUTP in SV40-infected CV-1 cells made permeable with saponin. The labeled cells were then irradiated with UV light (254 nm) and were treated extensively with DNase I. Proteins with radioactive DNA tags were separated by SDS-PAGE and visualized by autoradiography. Among 10-15 proteins which were cross-linked, the proteins with apparent molecular weights of 16.5 K, 44 K, 82 K and those in the 94-140 K region appeared to be associated with newly replicated SV40 DNA. A pulse-chase experiment showed that the 82 K and 94-140 K proteins interacted with new DNA in a relatively localized region close to the replication fork. The 44 K protein was identified as the major viral capsid protein, VP1, using antiserum to SV40 capsid proteins. It was suggested that VP1 binds to nascent DNA shortly after DNA synthesis and migrates into chromatin maturation regions.  相似文献   

11.
B S Rao  R G Martin 《Journal of virology》1988,62(10):3879-3882
We have studied the early transition of newly replicated, segregated daughter molecules of simian virus 40 (SV40) into their mature, fully supercoiled state. The DNA of SV40 replicating in African green monkey kidney CV1 cells was chronically labeled with [14C]thymidine and pulse-labeled with [3H]thymidine. The cells were lysed and the viral DNA was isolated. Density gradient centrifugation of viral DNA in cesium chloride revealed that the pulse-labeled, newly synthesized, closed circular supercoiled DNA molecules banded at a slightly higher density (delta sigma = 0.0025) than the chronically labeled DNA, suggesting that the newly completed molecules were in a different structural state. Electrophoresis of DNA in agarose gels at appropriate chloroquine concentrations demonstrated that the mobility of the pulse-labeled closed, superhelical DNA was retarded relative to that of the chronically labeled DNA. These observations indicated that the newly completed SV40 DNA molecules existed in a structural state more relaxed than that of mature DNA by one or two linking numbers.  相似文献   

12.
The species of proteins associated with chromatin and ribosomes of simian virus 40 (SV40)-transformed and untransformed monkey, mouse, and rat cells have been compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after phosphorylation of these proteins either in vivo or in vitro. In vitro phosphorylation was carried out by protein kinase associated with these organelles and [gamma-(32) P]ATP as the phosphoryl donor. The reaction products contained both phosphoserine and phosphothreonine in approximately equal amounts. The electrophoretic analysis of the phosphorylated proteins revealed that the highly phosphorylated protein with a molecular weight of approximately 90,000 (90K protein) was associated with chromatin and ribosomes from transformed cells but not from untransformed cells. The 90K protein could be extracted from chromatin and ribosomes with 0.5 to 1.0 M NaCl or KCl. The 90K protein was still associated with the runoff ribosomes prepared by the puromycin reaction of the post-mitochondrial supernatant in the protein-synthesizing system. In vitro phosphorylation of chromatin and ribosomes from SV40 tsA-transformed mouse and rat cells indicated that the amounts of 90K protein associated with these organelles decreased greatly when the cells were cultivated at the restrictive temperature. A similar temperature-dependent decrease in the amount of (32)P-labeled 90K protein was observed in nonhistone chromosomal and ribosome-associated protein fractions prepared from SV40 tsA-transformed cells labeled with [(3)H]leucine and [(32)P]orthophosphate in vivo. In vitro phosphorylated 90K protein in nonhistone chromosomal and ribosome-associated proteins extracted with high salt was not immunoprecipitated with anti-SV40 T sera.  相似文献   

13.
14.
Non-histone chromatin proteins synthesized during chicken embryonic liver development were labeled with [3H]tryptophan and [3H]methionine and characterized by electrophoresis. During embryonic development protein/DNA ratio in chromatin was low (1.30-1.62) but synthesis of non-histone protein was high. Especially one characteristic fraction K (MW 18 000), tightly bound with DNA was preferentially associated with DNAase II sensitive, active transcribed sequences. In 7-day old and adult chicken synthesis of all non-histone proteins was low, fraction K was absent or synthesized only in small amounts in association with non-active sequences, however protein/DNA ratio in chromatin was high (2.30-2.33).  相似文献   

15.
Cells transformed by tsA mutants of simian virus 40 (SV40) are temperature sensitive for the maintenance of the transformed phenotype. The kinetics of induction of DNA synthesis were determined for hamster cell transformants shifted to the permissive temperature after a 48-h serum arrest at the nonpermissive temperature. DNAsynthesis was initiated in the tsA transformants by 8 h after shiftdown was maximal by 12 h. The presence or absence of fetal bovine serum at the time of temperature shift had no effect on the kinetics of initiation of DNA synthesis. Analysis of TTP in tsA transformants revealed similar levels of incorporation of [3H]thymidine into TTP at both permissive and nonpermissive temperatures. Autoradiography revealed that by 12 h after a shift to the permissive temperature, approximately 50% of the cells exhibited labeled nuclei after a 60-min pulse with [3H]thymidine, indicating that a majority of the cells were actively synthesizing DNA. By 8 to 12 h after a shiftup of confluent tsA transformants to the nonpermissive temperature, the number of labeled nuclei was reduced to approximately 16%, regardless of serum concentration. These data indicate that the SV40 gene A product, either directly or indirectly, regulates cellular DNA synthesis in transformed cells.  相似文献   

16.
Human diploid fibroblasts, TIG-1, cease to proliferate at about 60-62 population doubling level. In their senescent state used in this study, the percentage of nuclei labeled by [3H]thymidine for 48 h was around 1-2% in fresh medium containing 5-40% fetal bovine serum. The percentage of labelled nuclei increased up to 10-fold after infection with SV40. This increase reflects stimulation of cell DNA synthesis because: 1. The increase also occurred when ts A900 was used for infection at the non-permissive temperature, under these conditions viral DNA synthesis is inhibited; 2, the increase paralleled the stimulation of [3H]thymidine incorporation into DNA in a Hirt-precipitate fraction from SV40-infected cells. UV-irradiated SV40 had reduced ability to induce DNA synthesis. A viable deletion mutant of SV40, d1940, had almost the same activity to induce cell DNA synthesis as did wild-type SV40. Equilibrium density gradient centrifugation analysis of DNA labelled with 5-bromodeoxyuridine (BrdU) supported semiconservative replication rather than repair synthesis. We conclude that a considerable fraction of human diploid cells in a senescent population initiate host DNA replication by infection with SV40, although these cells cannot be stimulated with fetal bovine serum.  相似文献   

17.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

18.
G N Turner  P Nobis    W C Dewey 《Biophysical journal》1976,16(9):1003-1012
The DNA in Chinese hamster cells was labeled first for 3 h with [3H]TdR and then for 3 h with [125I]UdR. Chromatin was extracted, frozen, and stored at -30 degrees C until 1.0 X 10(17) and 1.25 X 10(17) disintegrations/g of labeled DNA occurred for 125I and 3H respectively. Velocity sedimentation of chromatin (DNA with associated chromosomal proteins) in neutral sucrose gradients indicated that the localized energy from the 125I disintegrations, which gave about 1 double-strand break/disintegration plus an additional 1.3 single strand breaks, selectively fragmented the [125I] chromatin into pieces smaller than the [3H] chromatin. In other words, 125I disintegrations caused much more localized damage in the chromatin labeled with 125I than in the chromatin labeled with 3H, and fragments induced in DNA by 125I disintegrations were not held together by the associated chromosomal proteins. Use of this 125I technique for studying chromosomal proteins associated with different regions in the cellular DNA is discussed. For these studies, the number of disintegrations required for fragmenting DNA molecules of different sizes is illustrated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号