首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

2.
Abstract: The properties of γ-aminobutyric acid recognition sites, benzodiazepine binding sites and the effect of exogeneous γ-aminobutyric acid on benzodiazepine binding were determined in crude membrane fractions prepared from the brains of DBN/2 mice at ages before (8-9 and 17-18 days), during (22-23 and 28-29 days) and after (40-43 days) the age of high susceptibility to audiogenic seizures. These have been compared with data from age- matched mice of a strain (TO) with lower audiogenic seizure susceptibility. The number of high-affinity [3H]γ-aminobutyric acid binding sites was lower at all ages in DBN/2 mice compared with TO mice, but the affinity was higher in DBN/2 mice. The number of low-affinity [3H]y-aminobutyric acid binding sites was lower at 8-9 days and 40-43 days in DBN/2 mice, but was not significantly different from TO mice at other ages. For [3H]flunitrazepam binding, the only difference found was a slight reduction in the number of binding sites at 28-29 days of age in DBN/2 mice. γ-Aminobutyric acid stimulation of [3H]-flunitrazepam binding was not significantly different up to 22-23 days of age, but was higher in DBN/2 mice at 28-29 days and lower at 40-43 days. Impairment of γ-aminobutyric acid function is a possible permissive factor in the age-dependent audiogenic seizure susceptibility in DBN/2 mice.  相似文献   

3.
The properties of muscimol, beta-carboline (BC), and benzodiazepine (BZD) binding to crude synaptic membranes were studied in the spinal cord and cerebellum of rats. In cerebellar membranes, the density of high-affinity [3H]muscimol and [3H]6,7-dimethoxy-4-ethyl-beta-carboline ([3H]BCCM) binding sites is almost identical to that of [3H]flunitrazepam ([3H]FLU) or [3H]flumazenil (Ro 15-1788; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1-4]benzodiazepine-3-carboxylate). In contrast to the cerebellum, the number of muscimol and BC binding sites in rat spinal cord is approximately 20-25% of the number of FLU or flumazenil binding sites. Moreover, in spinal cord membranes, BC recognition site ligands displace [3H]-flumazenil bound to those sites, with low affinity and a Hill slope significantly less than 1; the potency of the different BCs in displacing [3H]flumazenil is 20-50-fold lower in the spinal cord than in the cerebellum. [3H]Flumazenil is not displaced from spinal cord membranes by the peripheral BZD ligand Ro 5-4864 (4'-chlorodiazepam), whereas it is displaced with low affinity and a Hill slope of less than 1 (nH = 0.4) by CL 218,872 (3-methyl-6-(3-trifluoromethylphenyl)-1,2,4-triazolol[4,3-b] pyridazine). These data suggest that a large number of BZD binding sites in spinal cord (approximately 80%) are of the central-type, BZD2 subclass, whereas the BZD binding sites in cerebellum are predominantly of the central-type, BZD1 subclass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Binding assays of [3H]muscimol and [3H]-flunitrazepam have been performed on brain homogenates of brainstem, cerebellum, and forebrain of genetically epileptic quaking (qk) mutant mice 20, 40, 70, and 90 days old and their corresponding controls of the same strain (C57BL/6J). The endogenous gamma-aminobutyric acid (GABA) content has been determined in various brain regions of 70-day-old qk and control mice. Finally, the behavioral effects of diazepam, of the mixed GABAA/GABAB receptor agonist progabide, and of the selective GABAB receptor agonist baclofen have been assessed in adult qk mutants. Our results strongly suggest a lack of involvement of GABAergic neurotransmission in the inherited epilepsy of the qk mutant mouse.  相似文献   

5.
The anthelminthic natural product avermectin B1a (AVM) modulates the binding of gamma-aminobutyric acid (GABA) and benzodiazepine (BZ) receptor ligands to membrane homogenates of mammalian brain. The potent (EC50 = 40 nM) enhancement by AVM of [3H]diazepam binding to rat or bovine brain membranes resembled that of barbiturates and pyrazolopyridines in being inhibited (partially) by the convulsants picrotoxin, bicuculline, and strychnine, and by the anticonvulsants phenobarbital and chlormethiazole. The maximal effect of AVM was not increased by pentobarbital or etazolate. However, AVM affected BZ receptor subpopulations or conformational states in a manner different from pentobarbital. Further, unlike pentobarbital and etazolate, AVM did not inhibit allosterically the binding of the BZ receptor inverse agonist [3H]beta-carboline-3-carboxylate methyl ester, nor did it inhibit, but rather enhanced, the binding of the cage convulsant [35S]t-butyl bicyclophosphorothionate to picrotoxin receptor sites. AVM at submicromolar concentrations had the opposite effect of pentobarbital and etazolate on GABA receptor binding, decreasing by half the high-affinity binding of [3H]GABA and related agonist ligands, and increasing by over twofold the binding of the antagonist [3H]bicuculline methochloride, an effect that was potentiated by picrotoxin. AVM also reversed the enhancement of GABA agonists and inhibition of GABA antagonist binding by barbiturates and pyrazolopyridines. These overall effects of AVM are unique and require the presence of another separate drug receptor site on the GABA/BZ receptor complex.  相似文献   

6.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

7.
Antibodies raised against the synthetic peptide NH2-QKSDDDYEDYASNKTC-COOH (gamma 2 1-15 Cys), which corresponds to the N-terminal amino acid sequence with a C-terminal cysteine of the human gamma 2 subunit of the gamma-aminobutyric acidA (GABAA) receptor, were used to study the quantitative immunoprecipitation of agonist benzodiazepine binding sites from bovine brain. Anti-gamma 2 1-15 Cys antibodies were found to immunoprecipitate specifically in parallel [3H]flunitrazepam- and [3H]muscimol-reversible binding sites in a dose-dependent manner. The maximum percentages of [3H]flunitrazepam binding sites immunoprecipitated from detergent extracts of bovine cerebral cortex, cerebellum, and hippocampus were 68, 77, and 83%, respectively. Immunoprecipitation studies with anti-alpha 1 324-341 antibodies carried out in parallel with anti-gamma 2 1-15 Cys antibodies provided evidence for the promiscuity of the gamma 2 subunit within native GABAA receptors. These results substantiate the association of the gamma 2 polypeptide with native GABAA receptors.  相似文献   

8.
We have solubilized, affinity-purified, and functionally reconstituted the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat brain into natural brain lipid liposomes. The detergent, 3-[(3-cholamidopropyl)-dimethylammonio] 1-propanesulphonate, was employed for the isolation of the receptor in the presence of a whole rat brain lipid extract supplemented with cholesteryl hemisuccinate. The soluble and reconstituted protein showed a homogeneous [3H]flunitrazepam binding population and the allosteric modulation of this binding site by GABA, by the pyrazolopyridine, cartazolate, and by the depressant barbiturate, pentobarbital. The purified GABA/BDZ receptor when incorporated into liposomes has been visualized by electron microscopy and reveals rosette structures, 8-9 nm in diameter, which appear to have a central pore. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the reconstituted GABA/BDZ receptor reveals three major protein bands of 41, 52-56, and 59-62 kDa, the latter two of which appears as doublets. Functional receptor reconstitution is demonstrated by the measurement of GABA-stimulated 36Cl- flux into the purified GABA/BDZ receptor incorporated liposomes and its modulation by the BDZs, barbiturates, and pyrazolopyridines.  相似文献   

9.
Inhalation anesthetics, such as diethyl ether, halothane, and enflurane, increase 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent, picrotoxin-sensitive fashion. At concentrations consistent with those that stimulate 36Cl- uptake, inhalation anesthetics also inhibit the binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) to well-washed cortical membranes. Scatchard analysis of [35S]TBPS binding indicates that these agents reduce the apparent affinity of this radioligand and have little effect on the Bmax. The ability of inhalation anesthetics to directly stimulate 36Cl- uptake and inhibit [35S]TBPS binding is a property shared by nonvolatile anesthetics. Nonetheless, there are differences between nonvolatile agents (such as barbiturates and alcohols) and inhalation anesthetics, because the former compounds augment muscimol (a GABAmimetic) stimulated 36Cl- uptake, whereas the latter group (such as ether and enflurane) inhibit this effect. These findings demonstrate that therapeutically relevant concentrations of inhalation anesthetics perturb the benzodiazepine/gamma-aminobutyric acid receptor chloride channel complex, and suggest this oligomeric protein may be a common mediator of some aspects of anesthetic action.  相似文献   

10.
The bovine gamma-aminobutyric acidA/benzodiazepine receptor complex has been purified by a novel immunoaffinity chromatography method on immobilized monoclonal antibody 62-3G1. Immunopurification of the complex was achieved in a single step with an improved yield over affinity chromatography on the benzodiazepine Ro 7-1986/1. High-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the immunoaffinity-purified receptor revealed three major peptide bands of 51,000, 55,000, and 57,000 Mr which were also present in the Ro 7-1986/1 affinity-purified receptor. Peptide mapping, immunoblotting with subunit specific antibodies, and photoaffinity labeling with [3H]flunitrazepam and [3H]muscimol have been used for the identification of receptor subunits, including several which comigrated in a single band in SDS-PAGE.  相似文献   

11.
The postnatal development of the gamma-aminobutyric acidA/benzodiazepine receptor (GABAR/BZDR) complex of the rat brain has been investigated using the monoclonal antibody 62-3G1 and the polyclonal rabbit antiserum A, specific for the 57,000 and 51,000 Mr receptor subunits, respectively. Both GABAR and BZDR binding activities co-precipitated during all postnatal ages. Adult rats showed a main 51,000 Mr[3H]flunitrazepam photoaffinity-labeled peptide, whereas newborn rats showed several photolabeled peptides of higher Mr. All the photolabeled peptides could be immunoprecipitated with each antibody regardless of the age of the rats. These results suggest that the physical coupling between the GABAR and the BZDR is already present in newborn animals and it is maintained afterwards during development. Glycosidase and peptidase treatments of the immunoprecipitated GABAR/BZDR complex indicated that all the [3H]flunitrazepam-photolabeled subunits are different peptides, although they seem to conserve a high degree of homology. In addition to the age-dependent heterogeneity, the results also suggest that for each age, there is heterogeneity in the subunit composition of the GABAR/BZDR complex.  相似文献   

12.
The hydrodynamic behaviour of both the soluble and purified gamma-aminobutyric acidA (GABAA) receptor of bovine or rat cerebral cortex has been investigated in solution in Triton X-100 or in 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS). In all the hydrodynamic separations made, it was found that the binding activities for GABA, benzodiazepine, and (where detectable) t-butylbicyclophosphorothionate comigrated. Conditions were established for gel exclusion chromatography and for sucrose density gradient velocity sedimentation that maintain the GABAA receptor in a nonaggregated form. Using these conditions, the molecular weight of the bovine GABAA receptor in the above-mentioned detergents was calculated using the H2O/2H2O method. A value of Mr 230,000-240,000 was calculated for the bovine pure GABAA receptor purified in sodium deoxycholate/Triton X-100 media. A value of Mr 284,000-290,000 was calculated for the nonaggregated bovine or rat cortex receptor in CHAPS, but the Stokes radius is smaller in the latter than in the former medium and the detergent binding in CHAPS is underestimated. Thus the deduced Mr, 240,000, is the best estimate by this method.  相似文献   

13.
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors.  相似文献   

14.
The specific binding of [N-methyl-3H]flunitrazepam ([3H]FNZP) to a membrane fraction from the supraoesophageal ganglion of the locust (Schistocerca gregaria) has been measured. The ligand binds reversibly with a KD of 47 nM. The binding is Ca2+-dependent, a property not found for the equivalent binding site in vertebrate brain. The pharmacological characteristics of the locust binding site show similarities to both central and peripheral benzodiazepine receptors in mammals. Thus binding is enhanced by gamma-aminobutyric acid (GABA), a feature of mammalian central receptors, whereas the ligand Ro 5-4864 was more effective in displacing [3H]FNZP than was clonazepam, which is the pattern seen in mammalian peripheral receptors. The locust benzodiazepine binding site was photoaffinity-labelled by [3H]FNZP, and two major proteins of Mr 45K and 59K were specifically labelled. In parallel experiments with rat brain membranes a single major protein of Mr 49K was labelled, a finding in keeping with many reports in the literature. We suggest that the FNZP binding site described here is part of the GABA receptor complex of locust ganglia. The insect receptor appears to have the same general organization as its mammalian counterpart but differs significantly in its detailed properties.  相似文献   

15.
Polyclonal antibodies have been raised against synthetic peptides whose sequences correspond to the N-terminal 15 amino acids and the C-terminal 17 amino acids of the bovine gamma-aminobutyric acidA (GABAA) receptor alpha 1 subunit. These antibodies were shown to react with the denatured GABAA receptor alpha subunit, Mr 53,000, in Western blots with both purified receptor and brain membranes as antigens. Also, both antibodies recognised both the purified and detergent-solubilised GABAA receptor as demonstrated by dose-dependent specific immunoprecipitation of the GABA and benzodiazepine binding sites from solution. Evidence is also presented to show brain-regional distribution of the expression of the alpha 1 subunit.  相似文献   

16.
Triethyllead (TEL), the active metabolite of tetraethyllead, was shown previously to inhibit selectively high-affinity Na+-dependent uptake of gamma-aminobutyric acid (GABA) into cerebrocortical synaptosomes. Such inhibition was not related to the Na+ gradient, Na+,K+-ATPase activity, [Cl-], or energy charge. We report here that TEL inhibits GABA binding to the presynaptic transporter involved in Na+-dependent uptake. Scatchard plot analysis of Na+-dependent [3H]GABA binding to a highly purified synaptic plasma membrane preparation revealed that 25 microM TEL reduced the Bmax by 44%, leaving the KD unchanged. This binding was reversible and predominantly involved membrane uptake sites, as characterized by pharmacological specificity to GABA ligands. Approximately 85% of specific GABA binding was considered membrane uptake site binding, as indicated by sensitivity to nipecotic acid and diaminobutyric acid, with relative insensitivity to muscimol, bicuculline methiodide, baclofen, and beta-alanine. With respect to previous data, these finding suggest that TEL inhibits Na+-sensitive high-affinity GABA uptake by interfering with GABA binding to its presynaptic transporter.  相似文献   

17.
Equilibrium binding interactions at the gamma-aminobutyric acid (GABA) and benzodiazepine recognition sites on the GABAA receptor-Cl- ionophore complex were studied using a vesicular synaptoneurosome (microsacs) preparation of rat brain in a physiological HEPES buffer similar to that applied successfully in recent GABAergic 36Cl- flux measurements. NO 328, a GABA reuptake inhibitor, was included in the binding assays to prevent the uptake of [3H]muscimol. Under these conditions, the equilibrium dissociation constant (KD) values for [3H]muscimol and [3H]diazepam bindings are 1.9 microM and 40 nM, respectively. Binding affinities for these and other GABA and benzodiazepine agonists and antagonists correlate well with the known physiological doses required to elicit functional activity. This new in vitro binding protocol coupled with 36Cl- flux studies should prove to be of value in reassessing the pharmacology of the GABAA receptor complex in a more physiological environment.  相似文献   

18.
In the present communication we have investigated the allosteric coupling between the gamma-aminobutyric acidA (GABAA) receptor and the pharmacologically different benzodiazepine (BZD) receptor subtypes in membranes from various rat nervous system regions. Two types of BZD receptors (type I and type II) have been classically defined using CL 218.872. However, using zolpidem, three different BZD receptors have been identified by binding displacement experiments in membranes. These BZD receptor subtypes displayed high, low, and very low affinity for zolpidem. The distribution of the high- and low-affinity binding sites for zolpidem was similar to that of type I and type II subtypes in cerebellum, prefrontal cortex, and adult cerebral cortex. On the other hand, the very-low-affinity binding site was localized in relative high proportion in spinal cord, hippocampus, and newborn cerebral cortex and, to a minor extent, in superior colliculus. The allosteric coupling between the GABAA receptor and the BZD receptor subtypes was different. The high- and low-affinity binding sites for zolpidem seemed to have a similar high degree of coupling, except in spinal cord. On the other hand, the very-low-affinity binding site for zolpidem displayed a low degree of coupling with the GABAA receptor. These results seem to indicate that the different efficacy of GABA in enhancing the [3H]flunitrazepam binding could be due to the different BZD receptor subtypes present in the GABAA/BZD receptor complex and, moreover, led us to speculate that the low GABA efficacy found in membranes from spinal cord, hippocampus, and newborn cerebral cortex might be due to the presence in relatively high proportion of the very-low-affinity binding site for zolpidem.  相似文献   

19.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

20.
We evaluated the effect of the two N-trifluoroethyl benzodiazepines, quazepam and its 2-oxo metabolite SCH 15725, which possess preferential affinity for type I benzodiazepine recognition sites, on the binding of [3H] gamma-aminobutyric acid ([3H]GABA) to rat brain membrane preparations. The study also included compounds such as diazepam and N-desalkyl-2-oxoquazepam (SCH 17514), which have equal affinity for the type I and type II receptor subtypes. Binding of [3H]GABA was studied in frozen-thawed and repeatedly washed cortical membranes incubated in 20 mM KH2PO4 plus 50 mM KCl, pH 7.4, at 4 degrees C in the absence and presence of quazepam or its metabolites. Addition of 10(-6) M quazepam increased by 30% specific [3H]GABA binding; as revealed by Scatchard plot analysis, the effect was due to an increase in the total number of GABA receptors. The effect of quazepam was concentration dependent, and it was shared by its active metabolite SCH 15725. The potency of quazepam and SCH 15725 in enhancing [3H]GABA binding was similar to that of diazepam, whereas CL 218872 and SCH 17514 were less active. Moreover, the [3H]GABA binding-enhancing effect of quazepam was mediated by an occupancy of benzodiazepine receptors, because it was specifically antagonized by 5 X 10(-6) M Ro15-1788.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号