首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine transforming growth factor-beta 3 (TGF beta 3) cDNAs were isolated from a TGF beta 2-induced AKR-2B cDNA library. The composite cDNA sequence is 2894 nucleotides long, including 610-nucleotide and 1054-nucleotide 5' and 3' untranslated sequences, respectively. The murine TGF beta 3-coding region is 1230 nucleotides in length and encodes a precursor protein of 410 amino acids, with a 96% peptide sequence identity with the human TGF beta 3 precursor. Examination of TGF beta 1 and TGF beta 3 mRNA levels in adult murine tissues showed that TGF beta 1 mRNA expression is predominant in spleen, lung, and placenta. In contrast, TGF beta 3 RNA was present in substantial amounts in brain, heart, adipose tissue, and testis. TGF beta 3 mRNA is also observed in adult mouse lung and placenta. Both TGF beta 1 and TGF beta 3 RNAs were present in all stages of mouse fetal development studied from 10.5-17.5 days postcoitum, with higher levels observed in the latter stages. The differential expression of these TGF beta genes suggests that the various TGF beta species may have distinct physiological roles in vivo.  相似文献   

2.
3.
4.
We studied the effects of interleukin-1 alpha (IL-1) and tumor necrosis factor-alpha (TNF), alone and in combination, on MCF-7 breast cancer cells to determine whether these cytokines alter cell growth, TNF gene expression, and TNF secretion. We found that IL-1 alone and TNF alone inhibited cell growth in a dose-dependent manner. Each cytokine arrested growth in the G0/G1 phase of the cell cycle, with maximum growth inhibition at 1000 U/ml (P less than 0.05) and 100 U/ml (P less than 0.01), respectively. However, the combination of these two cytokines did not result in greater growth inhibition or a greater percentage of cells arrested in the G0/G1 phase of the cell cycle compared with each cytokine alone. We examined the effect of exogenous IL-1 and TNF on TNF gene expression by Northern blot analysis. In the absence of any cytokine, these cells do not express TNF mRNA. Exposure to IL-1 (1000 U/ml) induced TNF mRNA at 3 h; however, mRNA levels diminished thereafter to barely detectable levels by 24 h. Exposure to TNF (1000 U/ml) also induced TNF mRNA at 3 h, but in contrast to IL-1, the level of enhanced expression persisted at these levels through 72 h of exposure. Secretion of TNF by these cells is induced by exogenous TNF, but not by IL-1. IL-1 and TNF in combination do not produce greater inhibition of growth, greater amounts of TNF mRNA at 3 h, or greater secretion of TNF than that produced by TNF alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
MCF-7 human breast cancer cells have been studied for hormonal regulation of secretion of an insulin growth factor-I (IGF-I)-related growth factor. 17 beta-Estradiol, which is required for tumorigenesis of the cell line in the nude mouse and which stimulates proliferation in vitro, was able to significantly induce IGF-I secretion at 10(-13) M, with maximal induction at 10(-11) M. Under optimal conditions IGF-I could be induced 4-fold after 4 days. Demonstration of estrogenic stimulations required removal of phenol red, a weak estrogen, from the cell culture medium. In addition to estrogen, insulin, epidermal growth factor, and transforming growth factor alpha induce both cellular proliferation and IGF-I secretion, while growth inhibitory antiestrogens, transforming growth factor beta, and glucocorticoids have the opposite effect. In each case, modulations in IGF-I secretion preceeded effects on cellular proliferation. IGF-I was not regulated by human GH, basic fibroblast growth factor, platelet-derived growth factor, or PRL, none of which affected proliferation rate. Thus, regulation of IGF-I secretion in human breast cancer is controlled by different hormones from those previously reported in human fibroblasts. Regulation of IGF-I by neither estrogen nor antiestrogen was associated with changes in steady-state mRNA levels; thus regulation may occur at a step beyond mRNA. We conclude that IGF-I production is tightly coupled to growth regulation by estrogens, antiestrogens, and other hormones and may contribute to autocrine and/or paracrine growth regulation by these agents in breast cancer.  相似文献   

6.
Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in the storage of latent TGF beta in the ECM and regulate its availability. Here we show that fibronectin is critical for the incorporation of LTBP1 and transforming growth factor-beta (TGF beta) into the ECM of osteoblasts and fibroblasts. Immunolocalization studies suggested that fibronectin provides an initial scaffold that precedes and patterns LTBP1 deposition but that LTBP1 and fibronectin are later localized in separate fibrillar networks, suggesting that the initial template is lost. Treatment of fetal rat calvarial osteoblasts with a 70-kDa N-terminal fibronectin fragment that inhibits fibronectin assembly impaired incorporation of LTBP1 and TGFbeta into the ECM. Consistent with this, LTBP1 failed to assemble in embryonic fibroblasts that lack the gene for fibronectin. LTBP1 assembly was rescued by full-length fibronectin and superfibronectin, which are capable of assembly into fibronectin fibrils, but not by other fibronectin fragments, including a 160-kDa RGD-containing fragment that activates alpha5beta1 integrins. This suggests that the critical event for LTBP1 assembly is the formation of a fibronectin fibrillar network and that integrin ligation by fibronectin molecules alone is not sufficient. Not only was fibronectin essential for the initial incorporation of LTBP1 into the ECM, but the continued presence of fibronectin was required for the continued assembly of LTBP1. These studies highlight a nonredundant role for fibronectin in LTBP1 assembly into the ECM and suggest a novel role for fibronectin in regulation of TGF beta via LTBP1 interactions.  相似文献   

7.
8.
9.
10.
11.
Both transforming growth factor beta (TGF beta) and TGF alpha mRNA are expressed in human breast cancer cell lines. We have investigated the relationship of mRNA abundance for these growth modulators to the proliferation rate of a number of human breast cancer cell lines. Furthermore, we have investigated the relationship of regulation of TGF beta and TGF alpha mRNA to growth inhibition caused by progestins and nonsteroidal antiestrogens in T-47D human breast cancer cells. The abundance of TGF beta and TGF alpha mRNA in human breast cancer cell lines was not related directly to proliferation rate of the cells in culture or estrogen receptor positivity or negativity. The relationship of TGF beta and TGF alpha mRNA to growth inhibition caused by antiestrogens and progestins was investigated in T-47D human breast cancer cells. We observed that in T-47D human breast cancer cells the abundance of TGF beta mRNA is decreased in a time- and dose-dependent fashion by progestins but remains unaltered by nonsteroidal antiestrogens. Treatment of T-47D cells for 24 h with 10 nM medroxyprogesterone acetate (MPA) reduced the level of TGF beta mRNA to one third that present in untreated cells. The same treatment increased TGF alpha mRNA 3-fold above untreated controls in a time- and dose-dependent fashion and nonsteroidal antiestrogens caused a small decrease. The regulation of both TGF alpha and TGF beta mRNA was not directly related to inhibition of growth by progestins and antiestrogens in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The transforming growth factor-beta 1 (TGF beta 1) and -beta 2 (414) precursors both contain three predicted sites of N-linked glycosylation within their pro regions. These are located at amino acid residues 72, 140, and 241 for the TGF beta 2 (414) precursor and at residues 82, 136, and 176 for the TGF beta 1 precursor; both proteins contain mannose-6-phosphate (M-6-P) residues. The major sites of M-6-P addition are at Asn (82) and Asn (136), the first two sites of glycosylation, for the TGF beta 1 precursor. We now show that the major site of M-6-P addition within the TGF beta 2 (414) precursor is at Asn241, the third glycosylation site. To determine the importance of N-linked glycosylation to the secretion of TGF beta 1 and -beta 2, site-directed mutagenesis was used to change the Asn residues to Ser residues; the resulting DNAs were transfected into COS cells, and their supernatants were assayed for TGF beta activity. Substitution of Asn (241) of the TGF beta 2 (414) precursor resulted in an 82% decrease in secreted TGF beta 2 bioactivity. Mutation at Asn72 resulted in a 44% decrease, while mutation at Asn140 was without effect. Elimination of all three glycosylation sites resulted in undetectable levels of TGF beta 2. These results were compared with similar mutations made in the cDNA encoding the TGF beta 1 precursor. Mutagenesis of the two M-6-P-containing sites (Asn82 and Asn136) resulted in an 83% decrease in secreted TGF beta 1; replacement of Asn82 and Asn136 with Ser individually resulted in 85% and 42% decreases in activity, respectively. Substitution of Asn176 with Ser was without effect, while substitution of all three sites of glycosylation resulted in undetectable levels of TGF beta 1 activity, similar to the results obtained with TGF beta 2. The nine Cys residues within the mature region of TGF beta 1 were mutated to serine, and their effects on TGF beta 1 secretion were evaluated. Mutation of most Cys residues resulted in undetectable levels of TGF beta 1 protein or activity in conditioned medium. Mutation of Cys (355) led to the secretion of inactive TGF beta 1 monomers, suggesting that this residue is either directly involved in dimer formation or required for correct interchain disulfide bond formation.  相似文献   

13.
14.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGF, TGF alpha and TGF beta 1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGF alpha stimulated cell growth and DNA synthesis in OVCAR-3 cells, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGF beta 1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These effects on growth factors are dose dependent. The interaction of TGF beta 1 and EGF/TGF alpha was antagonistic in OVCAR-3 cells. In contrast, EGF/TGF alpha and TGF beta 1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2-3-fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGF alpha, TGF beta 1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine and paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for further study into the mechanism of growth regulation by growth factors in these cell lines.  相似文献   

15.
16.
Transforming growth factor (TGF)-beta1, a crucial molecule in metastatic bone cancer, stimulates collagenase-3 expression in the human breast cancer cell line, MDA-MB231. Cycloheximide inhibited this stimulation, indicating that de novo protein synthesis was essential for this response. We examined whether mitogen-activated protein kinase (MAPK) and/or Smad pathways are involved in TGF-beta1-stimulated collagenase-3 expression in MDA-MB231 cells. Biochemical blockade of extracellular regulated kinase-1/2 and p38 MAPK pathways partially abolished TGF-beta1-stimulated collagenase-3 mRNA expression; whereas overexpression of a dominant negative form of Smad3 completely blocked the TGF-beta1-response. These data indicate that TGF-beta1-induced MAPK and Smad pathways are involved in TGF-beta1-stimulated collagenase-3 expression in MDA-MB231 cells.  相似文献   

17.
18.
Transforming growth factor-beta (TGF-beta) is thought to play a role in the pathobiological progression of ovarian cancer because this peptide hormone is overexpressed in cancer tissue, plasma, and peritoneal fluid. In the current study, we investigated the role of the TGF-beta/Smad3 pathway in ovarian cancer metastasis by regulation of an epithelial-to-mesenchymal transition. When cancer cells were cultured on plastic, TGF-beta1, TGF-beta2, and TGF-beta3 induced pro-matrix metalloproteinase (MMP) secretion, loss of cell-cell junctions, down-regulation of E-cadherin, up-regulation of N-cadherin, and acquisition of a fibroblastoid phenotype, consistent with an epithelial-to-mesenchymal transition. Furthermore, Smad3 small interfering RNA transfection inhibited TGF-beta-mediated changes to a fibroblastic morphology, but not MMP secretion. When cancer cells were cultured on a three-dimensional collagen matrix, TGF-beta1, TGF-beta2, and TGF-beta3 stimulated both pro-MMP and active MMP secretion and invasion. Smad3 small interfering RNA transfection of cells cultured on a collagen matrix abrogated TGF-beta-stimulated invasion and MMP secretion. Analysis of Smad3 nuclear expression in microarrays of serous benign tumors, borderline tumors, and cystadenocarcinoma revealed that Smad3 expression could be used to distinguish benign and borderline tumors from carcinoma (P = 0.006). Higher Smad3 expression also correlated with poor survival (P = 0.031). Furthermore, a direct relationship exists between Smad3 nuclear expression and expression of the mesenchymal marker N-cadherin in cancer patients (P = 0.0057). Collectively, these results implicate an important role for the TGF-beta/Smad3 pathway in mediating ovarian oncogenesis by enhancing metastatic potential.  相似文献   

19.
Cell-type-specific localization and gonadotropin regulation of transforming growth factor-beta 1 (TGF-beta 1) and transforming growth factor-beta 2 (TGF-beta 2) in the hamster ovary were evaluated immunohistochemically under three conditions: (1) during the estrous cycle (Day 1 = estrus; Day 4 = proestrus); (2) after the blockade of periovulatory gonadotropin surges by phenobarbital, and (3) after FSH and/or LH treatment of long-term hypophysectomized hamsters. Ovarian TGF-beta 1 activity was primarily localized in theca and interstitial cells. The activity increased moderately but significantly after the preovulatory LH surge and reached a peak at 0900 h, Day 2 h; oocytes showed considerable activity. TGF-beta 1 immunoreactivity subsequently fell to low levels in theca-interstitial cells through 0900 h, Day 4. Significant TGF-beta 2 immunoreactivity appeared after the surge, mainly in the granulosa cells of both preantral and antral follicles; a few interstitial cells surrounding preantral follicles showed discrete staining. TGF-beta 2 immunoreactivity in granulosa cells and in interstitial cells next to preantral follicles reached a peak at 0900 h, Day 1, and persisted up to 0900 h, Day 2; oocytes showed no staining. Phenobarbital treatment blocked the appearance of TGF-beta 1 and TGF-beta 2 immunoreactivities at 1600 h, Day 4; however, a rebound in immunoreactivities was observed with the onset of the surge after a 1-day delay. Replacement of LH to long-term hypophysectomized hamsters resulted in a marked increase in TGF-beta 1 immunoreactivity in the interstitial cells, but FSH, although it induced follicular development, did not influence ovarian TGF-beta 1 activity. Treatment with FSH, however, induced a massive increase in TGF-beta 2 immunoreactivity in the granulosa cells of newly developed antral and preantral follicles but not in the interstitial cells; LH, on the other hand, had no significant effect on TGF-beta 2 activity. Treatment with FSH and LH combined resulted in a dramatic increase in TGF-beta 2 immunoreactivity in granulosa and interstitial cells and in TGF-beta 1 in theca and interstitial cells comparable to their peak activity in intact animals. Western analyses substantiated the presence of TGF-beta 1 and TGF-beta 2 in the hamster ovary and the specificity of immunolocalization. These studies, therefore, provide critical evidence that TGF-beta 1 and TGF-beta 2 in the hamster ovary are expressed in specific cell types and that their expression is differentially regulated by LH and FSH, respectively.  相似文献   

20.
Using a combination of hormone-binding assays, immunologic techniques, and mRNA hybridizations we have measured the estrogen receptor (ER) content and studied the hormonal regulation of ER mRNA in one estrogen responsive and one estrogen unresponsive breast cancer cell line, MCF-7 and T47Dco, respectively. Estradiol binding could be detected in cytosol from MCF-7 cells but not in T47Dco cells. However, when measured by an enzyme-linked immunosorbent assay, T47Dco cells were found to contain approximately 15 fmol ER/mg cytosolic protein or 10% of the ER content in MCF-7 cells. Immunologically reactive ER in T47Dco cells was indistinguishable in size (approximately equal to 68 KD) from the ER in MCF-7 cells, as shown by Western blotting using a monoclonal antihuman ER antibody. Quantification of ER mRNA in MCF-7 and T47Dco cells indicated that T47Dco cells contained approximately 50% of the ER mRNA levels found in MCF-7 cells. This basal level of ER mRNA in T47Dco cells was not decreased by estradiol treatment, as opposed to in MCF-7 cells where estradiol caused 40-60% decrease in the ER mRNA expression. Also, estradiol did not increase the progesterone receptor (PR) mRNA levels in T47Dco cells whereas in MCF-7 cells an approximately 5-fold increase of the PR mRNA levels occurred after estradiol treatment. However, incubation of the cells with the synthetic progestin R5020 decreased the ER mRNA levels to approximately the same degree in both cell lines. In conclusion, we have shown that estrogen down-regulates ER mRNA and up-regulates PR mRNA in MCF-7 cells. Neither of these estrogenic effects were seen in T47Dco cells. It appears that the steroid-resistance in T47Dco cells does not occur as a consequence of a complete absence of ER mRNA or protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号