首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Illumination increased markedly the affinity to bicarbonate of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) in leaves of Amaranthus hypochondriacus L., a C4 plant. When leaves were illuminated, the apparent Km for (HCO3-) of PEPC decreased by about 50% concurrent with a 2- to 5-fold increase in Vmax and 3- to 4-fold increase in Ki for malate. The inclusion of ethoxyzolamide, an inhibitor of carbonic anhydrase, during the assay had no effect on kinetic and regulatory properties of PEPC indicating that carbonic anhydrase was not involved during light-induced sensitization of PEPC to HCO3-. Pretreatment of leaf discs with cycloheximide (CHX), a cytosolic protein synthesis inhibitor, suppressed significantly the light-enhanced decrease in apparent Km (HCO3-). Further, in vitro phosphorylation of purified dark-form PEPC by protein kinase A (PKA) decreased the apparent Km (HCO3-) of the enzyme, in addition increasing Ki (malate) as expected. Such changes, due to in vitro phosphorylation of purified PEPC by PKA, occurred only with wild-type PEPC, but not in the mutant form of maize (S15D) which is already a mimic of the phosphorylated enzyme. These results suggest that phosphorylation of the enzyme is important during the sensitization of PEPC to HCO3- by illumination in C4 leaves. Since illumination is expected to increase the cytosolic pH and the availability of dissolved HCO3- in mesophyll cells, the sensitization by light of PEPC to HCO3- could be physiologically quite significant.  相似文献   

4.
Abstract. When detached leaves of Sedum telephium are incubated in the absence of water, a rapid switch from C3 photosynthesis to CAM (as indicated by the onset of day-to-night fluctuations in titratable acidity. ΔH+) occurs within the first dark period. The C3-CAM switch in intact plants occurs within 3 5d. Extractable activity of phospho enol pyruvate carboxylase (PEPC) increases five-fold in intact plants during CAM induction; however, during rapid CAM induction in detached leaves, there is only a very small increase in PEPC activity. Fractionation by anion exchange chromatography of crude extracts from leaves of intact plants subjected to water deficit shows that CAM induction is associated with the appearance of a molecular species of PEPC termed PEPC I. PEPC I is barely detectable in well-watered plants which are not performing CAM. The major form in these plants is termed PEPC II. In leaves from intact plants, there is a significant positive correlation between PEPC I activity and ΔH+ during a period of increasing water deficit. PEPC I exhibits day to night fluctuations in malate sensitivity, being less sensitive during the dark period. In contrast, PEPC II is more sensitive to inhibition by malate and has no day to night fluctuation in sensitivity. In detached leaves deprived of water, a small increase in PEPC I capacity is detected at the end of the first dark period (20 h after the start of treatment). The results suggest that PEPC I is required for attainment of maximum nocturnal malic acid synthesis. There is a significant correlation between leaf water status (relative water content), ΔH+, total PEPC and PEPC I activity suggesting that the internal water status of the plant may be a trigger for CAM induction. Abscisic acid applied to detached leaves does not cause nocturnal acidification.  相似文献   

5.
The C(4) succulent plant Portulaca oleracea shifts its photosynthetic metabolism to crassulacean acid metabolism (CAM) after 23 d of withholding water. This is accounted by diurnal acid fluctuation, net nocturnal but not day CO(2) uptake and drastic changes in phosphoenolpyruvate carboxylase (PEPC) kinetic and regulatory properties [Lara et al. (2003) Photosynth: Res. 77: 241]. The goal of the present work was to characterize the CAM activity in leaves of P. oleracea during water stress through the study of enzymes involved in carbon fixation and carbohydrate metabolism. After drought stress, a general decrease in the photosynthetic metabolism, as accounted by the decrease in the net CO(2) fixation and in the activity of enzymes such as ribulose-1,5-bisphosphate carboxylase/oxygenase, PEPC, pyruvate orthophosphate dikinase, phosphoenolpyruvate carboxykinase and NAD-malic enzyme was observed. We also found changes in the day/night activities and level of immunoreactive protein of some of these enzymes which were correlated to night CO(2) fixation, as occurs under CAM metabolism. Based on the results obtained, including those from in situ immunolocalization studies, we propose a scheme for the possible CO(2) fixation pathways used by P. oleracea under conditions of sufficient and limiting water supply.  相似文献   

6.
Control of C4 photosynthesis and Crassulacean acid metabolism (CAM) is, in part, mediated by the diel regulation of phosphoenolpyruvate carboxylase (PEPC) activity. The nature of this regulation of PEPC in the leaf cell cytoplasm of C4 and CAM plants is both metabolite-related and posttranslational. Specificially, the regulatory properties of the enzyme vary in accord with the physiological activity of C4 photosynthesis and CAM: PEPC is less sensitive to feedback inhibition by l-malate under light (C4 plants) or at night (CAM plants) than in darkness (C4) or during the day (CAM). While the view that a light-induced change in the aggregation state of the holoenzyme is a general mechanism for the diel regulation of PEPC activity in CAM plants is currently in dispute, there is no supportive in vivo evidence for such a tetramer/dimer interconversion in C4 plants. In contrast, a wealth of in vitro and in vivo data has accumulated in support of the view that the reversible phosphorylation of a specific, N-terminal regulatory serine residue in PEPC (e.g. Ser-15 or Ser-8 in the maize or sorghum enzymes, respectively) plays a key, if not cardinal, role in the posttranslational regulation of the carboxylase by light/dark or day/night transitions in both C4 and CAM plants, respectively.  相似文献   

7.
The induction of a Crassulacean acid like metabolism (CAM) was evidenced after 21–23 days of drought stress in the C4 succulent plant Portulaca oleracea L. by changes in the CO2 exchange pattern, in malic acid content and in titratable acidity during the day–night cycle. Light microscopy studies also revealed differences in the leaf structure after the drought treatment. Following the induction of the CAM-like metabolism, the regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), the enzyme responsible for the diurnal fixation of CO2 in C4 plants but nocturnal in CAM plants, were studied. The enzyme from stressed plants showed different kinetic properties with respect to controls, notably its lack of cooperativity, higher sensitivity to L-malate inhibition, higher PEP affinity and lower enzyme content on a protein basis. In both conditions, PEPC's subunit mass was 110 kDa, although changes in the isoelectric point and electrophoretic mobility of the native enzyme were observed. In vivo phosphorylation and native isoelectrofocusing studies indicated variations in the phosphorylation status of the enzyme of samples collected during the night and day, which was clearly different for the control and stressed groups of plants. The results presented suggest that PEPC activity and regulation are modified upon drought stress treatment in a way that allows P. oleracea to perform a CAM-like metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPC) plays a central role in the anaplerotic provision of carbon skeletons for amino acid biosynthesis in leaves of C3 plants. Furthermore, in both C4 and CAM plants photosynthetic isoforms are pivotal for the fixation of atmospheric CO2. Potato PEPC was mutated either by modifications of the N-terminal phosphorylation site or by an exchange of an internal cDNA segment for the homologous sequence of PEPC from the C4 plant Flaveria trinervia. Both modifications resulted in enzymes with lowered sensitivity to malate inhibition and an increased affinity for PEP. These effects were enhanced by a combination of both mutated sequences and pulse labelling with 14CO2 in vivo revealed clearly increased fixation into malate for this genotype. Activity levels correlated well with protein levels of the mutated PEPC. Constitutive overexpression of PEPC carrying both N-terminal and internal modifications strongly diminished plant growth and tuber yield. Metabolite analysis showed that carbon flow was re-directed from soluble sugars and starch to organic acids (malate) and amino acids, which increased four-fold compared with the wild type. The effects on leaf metabolism indicate that the engineered enzyme provides an optimised starting point for the installation of a C4-like photosynthetic pathway in C3 plants.  相似文献   

9.
The temporal co-ordination of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPc) activities by Mesembryanthemum crystallinum L. in C(3) and crassulacean acid metabolism (CAM) modes was investigated under conventional light-dark (LD) and continuous light (LL) conditions. When C(3) , net CO(2) assimilation rate increased during each subjective night under LL with maximum carboxylation unrelated to Rubisco activation state. The CAM circadian rhythm of CO(2) uptake was more pronounced, with CO(2) assimilation rate maximal towards the end of each subjective night. In vivo and in vitro techniques were integrated to map carboxylase enzyme regulation to the framework provided by CAM LL gas exchange activity. Rubisco was activated in vitro throughout each subjective dark period and consistently deactivated at each subjective dawn, similar to that observed at true dawn in constitutive CAM species. Instantaneous carbon isotope discrimination showed in vivo carboxylase co-dominance during the CAM subjective night, initially by Rubisco and latterly C(4) (PEPc), despite both enzymes seemingly activated in vitro. The circadian rhythm in titratable acidity accumulation was progressively damped over successive subjective nights, but maintenance of PEPc carboxylation capacity ensures that CAM plants do not become progressively more 'C(3) -like' with time under LL.  相似文献   

10.
The effect of environmental conditions, temperature, relative humidity, and light, together with the regulation of PEPC (phosphoenolpyruvate-carboxylase) activity by malate and pH on CAM (crassulacean acid metabolism), was studied in members of the Mesembryanthemaceae in their natural environment, the southern Namib desert. It was found that during a 24 h period the characteristics of PEPC change. Before sunrise the activity is higher when measured at pH 7 than 8. With bright sunlight the activity measured at pH 7 drops to 20% of its pre-sunrise value, the activity only recovers gradually after malate disappearance and stays constant throughout the night. When measured at pH 8, PEPC shows an opposite behavior, i.e., activity increases in bright sunlight and declines as the pH 7 activity increases. A day-night oscillation in the capacity of malate to stimulate or inhibit PEPC was found. During the day malate inhibits about 90% of the PEPC activity at both pH 7 and 8. After sunset there is a sudden decrease in this inhibition and, at pH 8, malate stimulates the activity by 50%. At pH 7 the stimulation was less.Both stomatal conductance and malate formation were found to increase only when the relative humidity at night rose to 80%. Changes in the properties of the PEPC coincided with the exposure to bright sunlight and changes in leaf temperature. The importance of these metabolic and environmental controls on the regulation of CAM in the Mesembryanthemaceae will be discussed.Abbreviations CAM crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC PEP-carboxylase  相似文献   

11.
Photosynthetic Activity of Ripening Tomato Fruit   总被引:4,自引:0,他引:4  
Carrara  S.  Pardossi  A.  Soldatini  G.F.  Tognoni  F.  Guidi  L. 《Photosynthetica》2001,39(1):75-78
Gas exchanges, chlorophyll (Chl) a fluorescence and carboxylation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) were determined in tomato (Lycopersicon esculentum Mill.) fruits picked at different developmental stages (immature, red-turning, mature, and over-ripe). The fruits did not show signs of CO2 fixation. However, photochemical activity was detectable and an effective electron transport was observed, the values of Chl fluorescence parameters in green fruits being similar to those determined in the leaves. The RuBPCO activity, which was similar to those recorded in the leaves at the immature stage of the fruit, decreased as the fruit ripened. PEPC activity was always higher than RuBPCO activity.  相似文献   

12.
The half-saturation constants for binding of the bivalent cations (Mg2+, Ni2+, Co2+, Fe2+ and Mn2+) to ribulose bisphosphate carboxylase/oxygenase from Glycine max and Rhodospirillum rubrum were measured. The values obtained were dependent on the enzyme and the cation present, but were the same for both oxygenase and carboxylase activities. Ribulose bisphosphate rather than its cation complex was the true substrate. The kinetic parameters Vmax.(CO2), Vmax.(O2), Km(CO2), Km(O2), and K1(O2) were determined for both enzymes and each cation activator. The evolutionary and mechanistic implications of these data are discussed.  相似文献   

13.
Changes in levels of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, orthophosphate: oxaloacetate carboxy-lyase, phosphorylating) were followed in leaves and stems of CAM-expressing and non-expressing Portulaca oleracea L. plants. CAM expression was induced by growing plants under an 8-h photoperiod and water stress conditions (SD-WS). Leaves and stems of these plants (designated CAM) expressed nocturnal acidification with an oscillation pattern and an amplitude characteristic of CAM plants. Generally, PEPC activity increased by ca 3-fold during the period of CAM induction. Over the day/night cycle. PEPC activity oscillated in a pattern typical of CAM plants. Treatment of the other plant group (designated as non-CAM) by growth under a 16-h photoperiod and well-watered conditions (LD-WW) did not induce expression of the tested criteria of CAM in plants. In these plants, nocturnal acidification as well as changes in the magnitude of PEPC, activity and fluctuation pattern were undetectable. SDS-PAGE of leaf extracts of the CAM-expressing plants and the corresponding densitometric scans show progressive increase in the amount of PEPC subunit protein (ca 95 kDa) during the period of CAM induction. These results show that induction of CAM-like characteristics in the C4 plant Portulaca oleracea is also accompanied by increased PEPC activity, which may be partly due to an increase in enzyme synthesis.  相似文献   

14.
The induction of CAM in Pedilanthus tithymaloides (Euphorbiaceae) under water-limited conditions was evaluated by following diurnal oscillations of CO2 fixation, titratable acidity and malic acid content in the leaf extracts. CAM induction was assessed by measuring the activities of phosphoenolpyruvate carboxylase (PEPC), NADH-malate dehydrogenase (MDH) and phosphoenolpyruvate caroxykinase (PEPCK) in the leaves as well. Drought resulted in large increases in the nocturnal acid accumulation and rates of CO2 uptake in the leaves of P. tithymaloides. The drought-induced CAM activity tended to be reversible after re-watering. Nevertheless, under well-watered conditions, plants of P. tithymaloides showed day time CO2 uptake patterns with less pronounced diurnal oscillations of organic acids. Our data indicate that although P. tithymaloides is a CAM plant, environmental variables like drought induce photosynthetic flexibility in this species. This type of plasticity in CAM and metabolic versatility in P. tithymaloides should be an adaptation for prolonged survival under natural adverse edaphic and microclimate situations.  相似文献   

15.
A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry.  相似文献   

16.
In Crassulacean acid metabolism (CAM) plants, phosphoenolpyruvate carboxylase (PEPC) is subject to day-night regulatory phosphorylation of a conserved serine residue in the plant enzyme's N-terminal domain. The dark increase in PEPC-kinase (PEPC-k) activity is under control of a circadian oscillator, via the enhanced expression of the corresponding gene (1). The signaling cascade leading to PEPC-k up-regulation was investigated in leaves and mesophyll cell protoplasts of the facultative, salt-inducible CAM species, Mesembryanthemum crystallinum. Mesophyll cell protoplasts had the same PEPC-k activity as leaves from which they were prepared (i.e., high at night, low during the day). However, unlike C(4) protoplasts (2), CAM protoplasts did not show marked PEPC-k up-regulation when isolated during the day and treated with a weak base such as NH(4)Cl. Investigations using various pharmacological reagents established the operation, in the darkened CAM leaf, of a PEPC-k cascade including the following components: a phosphoinositide-dependent phospholipase C (PI-PLC), inositol 1,4,5 P (IP(3))-gated tonoplast calcium channels, and a putative Ca(2+)/calmodulin protein kinase. These results suggest that a similar signaling machinery is involved in both C(4) (2, 3) and CAM plants to regulate PEPC-k activity, the phosphorylation state of PEPC, and, thus, carbon flux through this enzyme during CAM photosynthesis.  相似文献   

17.
Here, the kinetic properties and immunolocalization of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in young stems of Fagus sylvatica were investigated. The aim of the study was to test the hypothesis that there is a C4-like photosynthesis system in the stems of this C3 tree species. The activity, optimal pH and L-malate sensitivity of PEPC, and the Michaelis-Menten constant (Km) for phosphoenolpyruvate (PEP), were measured in protein extracts from current-year stems and leaves. A gel blot experiment and immunolocalization studies were performed to examine the isozyme complexity of PEPC and the tissue distribution of PEPC and Rubisco in stems. Leaf and stem PEPCs exhibited similar, classical values characteristic of C3 PEPCs, with an optimal pH of c. 7.8, a Km for PEP of c. 0.3 mM and a IC50 for L-malate (the L-malate concentration that inhibits 50% of PEPC activity at the Km for PEP) of c. 0.1 mM. Western blot analysis showed the presence of two PEPC subunits (molecular mass c. 110 kDa) both in leaves and in stems. Immunogold labelling did not reveal any differential localization of PEPC and Rubisco, neither between nor inside cells. This study suggests that C4-type photosynthesis does not occur in stems of F. sylvatica and underlines the importance of PEPC in nonphotosynthetic carbon fixation by most stem tissues (fixation of respired CO2 and fixation via the anaplerotic pathway).  相似文献   

18.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2002,40(4):547-552
A field experiment was conducted to investigate the changes in chlorophyll (Chl) and nitrogen (N) contents, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and phosphoenolpyruvate carboxylase (PEPC) contents and PEPC activity, and the photon-saturated net photosynthetic rate (P Nsat), and their relationships with leaf senescence in two maize hybrids with different senescent appearance. One stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55) hybrid were used in this study, and we found that Chl and N contents and the P Nsat in individual leaves of P3845 were greater than those in corresponding leaves of Hokkou 55 at the successive growth stages. In addition, larger contents of RuBPCO and PEPC, and a greater activity of PEPC were observed in P3845. Due to the lower rates of decrease of Chl, RuBPCO, and PEPC amounts per unit of N, and the lower net C translocation rate per unit of N in the stay-green hybrid, leaf senescence was delayed in comparison to the earlier senescent hybrid.  相似文献   

19.
The effects of phosphate and several phosphate-containing compounds on the activity of purified phosphoenolpyruvate carboxylase (PEPC) from the crassulacean acid metabolism plant, Crassula argentea, were investigated. When assayed at subsaturating phosphoenolpyruvate (PEP) concentrations, low concentrations of most of the compounds tested were found to stimulate PEPC activity. This activation, variable in extent, was found in all cases to be competitive with glucose 6-phosphate (Glc-6-P) stimulation, suggesting that these effectors bind to the Glc-6-P site. At higher concentrations, depending upon the effector molecule studied, deactivation, inhibition, or no response was observed. More detailed studies were performed with Glc-6-P, AMP, phosphoglycolate, and phosphate. AMP had previously been shown to be a specific ligand for the Glc-6-P site. The main effect of Glc-6-P and AMP on the kinetic parameters was to decrease the apparent Km and increase Vmax/Km. AMP also caused a decrease in the Vmax of the reaction. In contrast, phosphoglycolate acted essentially as a competitive inhibitor increasing the apparent Km for PEP and decreasing Vmax/Km. Inorganic phosphate had a biphasic effect on the kinetic parameters, resulting in a transient decrease in Km followed by an increase of the apparent Km for PEP with increasing concentration of phosphate. The Vmax also was decreased with increasing phosphate concentrations. Further, the enzyme appeared to respond to the complex of phosphate with magnesium. In the presence of a saturating concentration of AMP, no activation but rather inhibition was observed with increasing phosphate concentration. This is consistent with the binding of phosphate to two separate sites--the Glc-6-P activation site and an inhibitory site, a phenomenon that may be occurring with other phosphate containing compounds. High concentrations of phosphate with magnesium were found to protect enzyme activity when PEPC, previously shown to contain an essential arginine at the active site, was incubated with the specific arginyl reagent 2,3-butanedione, consistent with the binding of phosphate at the active site. Data were successfully fitted to a rapid equilibrium model allowing for binding of the phosphate-magnesium complex to both the activation site and the active site which accounts for the activation/deactivation observed at low substrate concentrations. Effects on the Vmax of the reaction are also addressed. Factors controlling the differential affinity of various effectors to the active site or activation site appear to include charge distribution, size, and other steric factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号