首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein expression by planktonic and biofilm cells of Streptococcus mutans   总被引:4,自引:0,他引:4  
Streptococcus mutans, a major causal agent of dental caries, functions in nature as a component of a biofilm on teeth (dental plaque) and yet very little information is available on the physiology of the organism in such surface-associated communities. As a consequence, we undertook to examine the synthesis of proteins by planktonic and biofilm cells growing in a biofilm chemostat at pH 7.5 at a dilution rate of 0.1 h(-1) (mean generation time=7 h). Cells were incubated with (14)C-labelled amino acids, the proteins extracted and separated by two-dimensional electrophoresis followed by autoradiography and computer-assisted image analysis. Of 694 proteins analysed, 57 proteins were enhanced 1.3-fold or greater in biofilm cells compared to planktonic cells with 13 only expressed in sessile cells. Diminished protein expression was observed with 78 proteins, nine of which were not expressed in biofilm cells. The identification of enhanced and diminished proteins by mass spectrometry and computer-assisted protein sequence analysis revealed that, in general, glycolytic enzymes involved in acid formation were repressed in biofilm cells, while biosynthetic processes were enhanced. The results show that biofilm cells possess novel proteins, of as yet unknown function, that are not present in planktonic cells.  相似文献   

3.
4.
Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (p<0.05) biofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (p<0.05) biofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that the biofilm production on microtitre plates may not be appropriate to represent other surfaces such as SS and that caution should be taken when selecting a method to quantify biofilm production on a surface.  相似文献   

5.
The problems associated with biofilm infections in humans result from the distinct characteristics of biofilms, in particular their high level of resistance to antibiotics. One of the hypotheses that have been advanced to explain this resistance to antimicrobials is the phenotypic differentiation of biofilm cells. Although many studies on biofilms have highlighted physiological alterations following the attachment of bacteria to a surface, no studies have explicitly demonstrated a "biofilm" physiology. To contribute to this topical debate, we used principal component analysis to interpret spot quantity variations observed on electropherograms obtained by two-dimensional gel electrophoresis of crude protein extracts from planktonic and sessile Pseudomonas aeruginosa cells. These analyses showed that the proteome of attached P. aeruginosa cells differs from that of their planktonic counterparts. Furthermore, we found that the proteome of sessile P. aeruginosa is strongly dependent on the nature of the biofilm substratum.  相似文献   

6.
7.
Escherichia coli O26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms. E. coli O157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore, E. coli O26:H11 remains a potential risk in food safety.  相似文献   

8.
Growth rate control of adherent, sessile populations was achieved by the controlled perfusion of membrane-associated bacterial biofilms by the method of Gilbert et al. (P. Gilbert, D. G. Allison, D. J. Evans, P. S. Handley, and M. R. W. Brown, Appl. Environ. Microbiol. 55:1308-1311, 1989). Changes in cell surface hydrophobicity were evaluated with respect to growth rate for such sessile Escherichia coli cells and compared with those of suspended (planktonic) populations grown in a chemostat. Newly formed daughter cells shed at the various growth rates from the biofilm during its growth and development were also included in the study. Surface hydrophobicity decreased with growth rate similarly for both planktonic and sessile E. coli; no significant differences were noted between the two. Daughter cells dislodged from the biofilm, however, were significantly more hydrophilic than those remaining, indicating that hydrophobicity changed during the division cycle. Our data support the hypothesis that dispersal of cells from adhesive biofilms and recolonization of new surfaces reflect cell-cycle-mediated events.  相似文献   

9.
Global gene expression in Escherichia coli biofilms   总被引:9,自引:0,他引:9  
It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared with planktonic growth. Genes encoding proteins involved in adhesion (type 1 fimbriae) and, in particular, autoaggregation (Antigen 43) were highly expressed in the adhered population in a manner that is consistent with current models of sessile community development. Several novel gene clusters were induced upon the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces.  相似文献   

10.
Candida albicans is a common, opportunistic, human fungal pathogen that causes a variety of mucosal and systemic afflictions. It exists in nature both in the biofilm or the sessile phase, as well as in the free-floating or the planktonic phase. Candida biofilms, in particular, display unique characteristics that confer survival advantages over their planktonic counterparts, such as their recalcitrance to common antifungals. The mechanisms underlying Candida biofilm formation and their attributes are poorly understood. In this study, we used a 2-DE-based approach to characterize the protein markers that are differentially expressed in Candida biofilms in comparison to their planktonic counterparts. Using tandem mass spectrometric analysis, we have identified a significant number of proteins including alkyl hydroperoxide reductase, thioredoxin peroxidase, and thioredoxin involved in oxidative stress defenses that are upregulated in the biofilm phase. These proteomic findings were further confirmed by real-time PCR and lucigenin-based chemiluminescence assays. In addition, we demonstrate that a drug target for the new antifungal agent echinocandin, is abundantly expressed and significantly upregulated in Candida biofilms. Taken together, these data imply that the biofilm mode, Candida, compared with their planktonic counterparts, exhibits traits that can sustain oxidative stress (anti-oxidants), and thereby exert resistance to commonly used antifungals.  相似文献   

11.
Pseudomonas aeruginosa is a pathogenic bacterium widely investigated for its high incidence in clinical environments and its ability to form strong biofilms. During biofilm development, sessile cells acquire physiological characteristics differentiating them from planktonic cells. But after treatment with disinfectants, or to ensure survival of the species in hostile environments, biofilm cells can detach. This complicates disinfection procedures. This study aimed to physiologically characterize cells detached from a P. aeruginosa biofilm and to compare them with their sessile and planktonic counterparts. We first tested planktonic growth kinetics and capacities to form new biofilms. Then we investigated cell-surface properties. And finally, we tested in vitro susceptibility to antibiotics. The results first indicated that sessile and detached cells have similar planktonic growth kinetics and cell-surface properties, distinguishable from those of planktonic cells. Interestingly, the three populations exhibited different biofilm-forming capacities, suggesting that there is a transitional phenotype between sessile and planktonic states, at least during the first hours following cell detachment. It is important to consider this observation when developing treatments to optimize disinfection processes. Surprisingly, the three populations showed the same antibiotic susceptibility profile.  相似文献   

12.
The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface. A switch between planktonic and sessile growth is believed to result in a phenotypic change in bacteria. In this study, a global analysis of physiological changes of the plant saprophyte Pseudomonas putida following 6 h of attachment to a silicone surface was carried out by analysis of protein profiles and by mRNA expression patterns. Two-dimensional (2-D) gel electrophoresis revealed 15 proteins that were up-regulated following bacterial adhesion and 30 proteins that were down-regulated. N-terminal sequence analyses of 11 of the down-regulated proteins identified a protein with homology to the ABC transporter, PotF; an outer membrane lipoprotein, NlpD; and five proteins that were homologous to proteins involved in amino acid metabolism. cDNA subtractive hybridization revealed 40 genes that were differentially expressed following initial attachment of P. putida. Twenty-eight of these genes had known homologs. As with the 2-D gel analysis, NlpD and genes involved in amino acid metabolism were identified by subtractive hybridization and found to be down-regulated following surface-associated growth. The gene for PotB was up-regulated, suggesting differential expression of ABC transporters following attachment to this surface. Other genes that showed differential regulation were structural components of flagella and type IV pili, as well as genes involved in polysaccharide biosynthesis. Immunoblot analysis of PilA and FliC confirmed the presence of flagella in planktonic cultures but not in 12- or 24-h biofilms. In contrast, PilA was observed in 12-h biofilms but not in planktonic culture. Recent evidence suggests that quorum sensing by bacterial homoserine lactones (HSLs) may play a regulatory role in biofilm development. To determine if similar protein profiles occurred during quorum sensing and during early biofilm formation, HSLs extracted from P. putida and pure C(12)-HSL were added to 6-h planktonic cultures of P. putida, and cell extracts were analyzed by 2-D gel profiles. Differential expression of 16 proteins was observed following addition of HSLs. One protein, PotF, was found to be down-regulated by both surface-associated growth and by HSL addition. The other 15 proteins did not correspond to proteins differentially expressed by surface-associated growth. The results presented here demonstrate that P. putida undergoes a global change in gene expression following initial attachment to a surface. Quorum sensing may play a role in the initial attachment process, but other sensory processes must also be involved in these phenotypic changes.  相似文献   

13.
14.
15.
Pseudomonas putida strains are frequently isolated from the rhizosphere of plants and many strains promote plant-growth, exhibit antagonistic activities against plant pathogens and have the capacity to degrade pollutants. Factors that appear to contribute to the rhizosphere fitness are the ability of the organism to form biofilms and the utilization of cell-to-cell-communication systems (quorum sensing, QS) to co-ordinate the expression of certain phenotypes in a cell density dependent manner. Recently, the ppu QS locus of the tomato rhizosphere isolate P. putida Iso F was characterized and an isogenic QS-negative ppuI mutant P. putida F117 was generated. In the present study we investigated the impact of QS and biofilm formation on the protein profile of surface-associated proteins of P. putida IsoF. This was accomplished by comparative proteome analyses of the P. putida wild type IsoF and the QS-deficient mutant F117 grown either in planktonic cultures or in 60 h old mature biofilms. Differentially expressed proteins were identified by peptide mass fingerprinting and database search in the completed P. putida KT2440 genome sequence. The sessile life style affected 129 out of 496 surface proteins, suggesting that a significant fraction of the bacterial genome is involved in biofilm physiology. In surface-attached cells 53 out of 484 protein spots were controlled by the QS system, emphasizing its importance as global regulator of gene expression in P. putida IsoF. Most interestingly, the impact of QS was dependent on whether cells were grown on a surface or in suspension; about 50% of the QS-controlled proteins identified in planktonic cultures were found to be oppositely regulated when the cells were grown as biofilms. Fifty-seven percent of all identified surface-controlled proteins were also regulated by the ppu QS system. In conclusion, our data provide strong evidence that the set of QS-regulated proteins overlaps substantially with the set of proteins differentially expressed in sessile cells.  相似文献   

16.
17.
Persister cells in a biofilm treated with a biocide   总被引:1,自引:0,他引:1  
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.  相似文献   

18.
The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in food-processing environment, which becomes a major concern for the food safety. The biofilm formation is strongly influenced by the availability of nutrients and environmental conditions, and particularly enhanced in poor minimal essential medium (MEM) containing glucose rather than in rich brain heart infusion (BHI) broth. To gain better insight into the conserved protein expression profile in these biofilms, the proteomes from biofilm- and planktonic-grown cells from MEM with 50?mM glucose or BHI were compared using two-dimensional polyacrylamide gel electrophoresis followed by MALDI-TOF/TOF analysis. 47 proteins were successfully identified to be either up (19 proteins) or down (28 proteins) regulated in the biofilm states. Most (30 proteins) of them were assigned to the metabolism functional category in cluster of orthologous groups of proteins. Among them, up-regulated proteins were mainly associated with the pentose phosphate pathway and glycolysis, whereas a key enzyme CitC involved in tricarboxylic acid cycle was down-regulated in biofilms compared to the planktonic states. These data implicate the importance of carbon catabolite control for L. monocytogenes biofilm formation in response to nutrient availability.  相似文献   

19.
The proteome of a Listeria monocytogenes strain isolated from a food plant was investigated to study the differential protein pattern expressed by biofilms and planktonic bacteria. The approach used in this study was a combination of two-dimensional electrophoresis, matrix-assisted laser desorption ionization-time of flight and database searches for the protein identification. Thirty-one proteins varied significantly between the two growth conditions. Twenty-two and nine proteins were up- and down-regulated respectively and nine proteins were successfully identified. The variations of the protein patterns indicated that the biofilm development is probably controlled by specific regulation of protein expression involved at various levels of cellular physiology.  相似文献   

20.
Candida albicans is a human commensal and opportunistic pathogen that participates in biofilm formation on host surfaces and on medical devices. We used DIGE analysis to assess the cytoplasmic and non‐covalently attached cell‐surface proteins in biofilm formed on polymethylmethacrylate and planktonic yeast cells and hyphae. Of the 1490 proteins spots from cytoplasmic and 580 protein spots from the surface extracts analyzed, 265 and 108 were differentially abundant respectively (> 1.5‐fold, p <0.05). Differences of both greater and lesser abundance were found between biofilms and both planktonic conditions as well as between yeast cells and hyphae. The identity of 114 cytoplasmic and 80 surface protein spots determined represented 73 and 25 unique proteins, respectively. Analyses showed that yeast cells differed most in cytoplasmic profiling while biofilms differed most in surface profiling. Several processes and functions were significantly affected by the differentially abundant cytoplasmic proteins. Particularly noted were many of the enzymes of respiratory and fermentative pentose and glucose metabolism, folate interconversions and proteins associated with oxidative and stress response functions, host response, and multi‐organism interaction. The differential abundance of cytoplasmic and surface proteins demonstrated that sessile and planktonic organisms have a unique profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号